Skip to main content
Log in

Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors

  • Articles—Organic Electronics Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Numerical simulations of organic field-effect transistors (OFET) of bottom and top contact (BOC, TOC) design with different source/drain contacts were carried out considering an exponential distribution of trap states in the gap of the active layer (a-Si model). For ohmic contacts, the current-voltage characteristics are similar to the trap-free case and there is not much difference between the two designs. However, the currents are lower due to immobile trapped charges, the threshold voltage is shifted, and the inverse subthreshold slope increases due to trap recharging. An analytical approximation for the effective mobility deviates from the simulation up to 20%. For low source/drain work function, there occur particular dependencies of the current on the gate voltage for the two designs, which are explained with the internal concentration and field profiles. A series resistance between source and channel causes in the TOC structure an abrupt transition from the gate voltage independent active region into saturation. In the BOC case, the reverse-biased Schottky-type source contact dominates the current. Through simulation of measured characteristics of prepared OFETs based on a modified poly-(phenylene-vinylene), the observed hysteresis is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sirringhaus, N. Tessler, and R.H. Friend: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).

    Article  CAS  Google Scholar 

  2. A. Dodabalapur, Z. Bao, A. Makhija, J.G. Laquindanum, V.R. Raju, Y. Feng, H.E. Katz, and J. Rogers: Organic smart pixels. Appl. Phys. Lett. 73, 142 (1998).

    Article  CAS  Google Scholar 

  3. M. Matters, D.M. de Leeuw, M.J.C.M. Vissenberg, C.M. Hart, P.T. Herwig, T. Geuns, C.M.J. Mutsaers, and C.J. Drury: Organic field-effect transistors and all-polymer integrated circuits. Optical Materials 12, 189 (1999).

    Article  CAS  Google Scholar 

  4. B. Crone, A. Dodabalapur, Y-Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, and W. Li: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).

    Article  CAS  Google Scholar 

  5. G.H. Gelinck, T.C.T. Geuns, and D.M. de Leeuw: Highperformance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487 (2000).

    Article  CAS  Google Scholar 

  6. C.J. Drury, C.M.J. Mutsaers, C.M. Hart, M. Matters, and D.M. de Leeuw: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73(1), 108 (1998).

  7. Y-Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V.R. Raju, and H.E. Katz: Organic complementary oscillators. Appl. Phys. Lett. 74, 2714 (1999).

    Article  CAS  Google Scholar 

  8. A.R. Brown, A. Pomp, D.M. de Leeuw, D.B.M. Klaassen, and E.E. Havinga: Precursor route pentacene metal-insulatorsemiconductor field-effect transistors. J. Appl. Phys. 79, 2136 (1996).

    Article  CAS  Google Scholar 

  9. H. Koezuka, A. Tsumura, H. Fuchigami, and K. Kuramoto: Polythiophene field-effect transistor with polypyrrole worked as source and drain electrodes. Appl. Phys. Lett. 62, 1794 (1993).

    Article  CAS  Google Scholar 

  10. H. Fuchigami, A. Tsumura, and H. Koezuka: Polythienylenevinylene thin-film transistor with high carrier mobility. Appl. Phys. Lett. 63, 1372 (1993).

    Article  CAS  Google Scholar 

  11. S.M. Sze: Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons; New York, Chichester, Brisbane, Toronto, Singapore, 1981).

  12. A.R. Brown, D.M. de Leeuw, E.E. Havinga, and A. Pomp: A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors. Synth. Met. 68, 65 (1994).

    Article  CAS  Google Scholar 

  13. S. Scheinert, G. Paasch, S. Pohlmann, H-H. Hörhold, and R. Stockmann: Field effect in organic devices based on solutiondoped Arylamino-PPV. Proceedings ESSDERC’99, Editions Frontiers, 1999, p. 704.

  14. S. Scheinert, G. Paasch, S. Pohlmann, H-H. Hörhold, and R. Stockmann: Field effect in organic devices with solution-doped arylamino-poly-(p-phenylene-vinylene). Solid-State Electronics 44, 845 (2000).

    Article  CAS  Google Scholar 

  15. G. Paasch, S. Scheinert, and R. Tecklenburg: Theory and modelling of organic field effect transistors. Proceedings ESSDERC’97, edited by H. Grünbacher, Editions Frontiers, 1997, p. 636.

  16. R. Tecklenburg, G. Paasch, and S. Scheinert: Theory of organic field effect transistors. Adv. Mater. Opt. Electron. 8, 285 (1998).

    Article  CAS  Google Scholar 

  17. S. Scheinert, G. Paasch, R. Tecklenburg and D. Schipanski: Organic FET current characteristics: Extraction of unusual field dependencies of hopping mobilities. Proceedings ESSDERC’98, edited by A. Touboul, Y. Danto, J.P. Klein, H. Grünbacher, Editions Frontiers, 1998, p. 628.

  18. S. Scheinert, G. Paasch, R. Tecklenburg, and D. Schipanski: A novel method to determine field dependencies of mobilities from MOSFET current characteristics. 43rd International Scientific Colloquium 1998, edited by W. Gens, TU Ilmenau, 1998, p. 305.

  19. M.C.J.M. Vissenberg and M. Matters: Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. 57, 12964 (1998).

  20. G. Horowitz and P. Delannoy: An analytical model for organicbased thin-film transistors. J. Appl. Phys. 70, 469 (1991).

  21. S. Scheinert, G. Paasch, M. Schrödner, H-K. Roth, S. Sensfuβ, and Th. Doll: Subthreshold characteristics of field effect transistors based on P3DDT and an organic insulator. J. Appl. Phys. 92, 330 (2002).

    Article  CAS  Google Scholar 

  22. N. Tessler and Y. Roichman: Two-dimensional simulation of polymer field-effect transistor. Appl. Phys. Lett. 79, 2987 (2001).

  23. Y. Roichman and N. Tessler: Structures of polymer field-effect transistor: Experimental and numerical analyses. Appl. Phys. Lett. 80, 151 (2002).

  24. T. Li, J.W. Balk, P.P. Ruden, I.H. Campbell, and D.L. Smith: Channel formation in organic field-effect transistors. J. Appl. Phys. 91, 4312 (2002).

    Article  CAS  Google Scholar 

  25. T. Li, P.P. Ruden, I.H. Campbell, and D.L. Smith: Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling. J. Appl. Phys. 93, 4017 (2003).

    Article  CAS  Google Scholar 

  26. M. Shur, M. Hack, and J.G. Shaw: A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66, 3371 (1989).

    Article  Google Scholar 

  27. M. Shur and M. Hack: Physics of amorphous silicon based alloy field-effect transistors. J. Appl. Phys. 55, 3831 (1984).

  28. J.G. Shaw and M. Hack: An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 64, 4562 (1988).

  29. K.Y. Chung and G.W. Neudeck: Analytical modelling of a-Si:H thin-film transistors. J. Appl. Phys. 62, 4617 (1987).

  30. ATLAS User’s Manual Version 1.5.0, Device Simulation Software (SILVACO International, Santa Clara, CA, 1997).

  31. G. Horowitz, R. Hajlaoui, and P. Delannoy: Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. J. Phys III. 5, 355 (1995).

    CAS  Google Scholar 

  32. F. Schauer: Temperature dependent field effect in organic-based thin-film transistor and its spectroscopic character. J. Appl. Phys. 86, 524 (1999).

  33. G. Horowitz: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).

  34. G. Horowitz, M.E. Hajlaoui, and R. Hajlaoui: Temperature and gate voltage dependence of hold mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000).

    Article  CAS  Google Scholar 

  35. S. Scheinert, G. Paasch, and T. Lindner: Relevance of organic field effect transistor models: Simulation vs. Experiment. Synth. Met. 137, 1451 (2003).

    Article  CAS  Google Scholar 

  36. ISE-TCAD: Integrated Systems Engineering AG (Zürich, Switzerland, 1995-1999).

  37. S. Scheinert, G. Paasch, P.H. Nguyen, S. Berleb, and W. Brütting: Transient I-V characteristics of OLEDs with deep traps. Proceedings ESSDERC’00, edited by W.A. Lane, G.M. Crean, F.A. McCabe, and H. Grünbacher, Editions Frontiers, 2000, p. 444.

  38. P.H. Nguyen, S. Scheinert, S. Berleb, W. Brütting, and G. Paasch: The influence of deep traps on transient current-voltage characteristics of organic light-emitting diodes. Org. Electron. 2, 105 (2001).

    Article  CAS  Google Scholar 

  39. A. Nesterov, G. Paasch, S. Scheinert, and T. Lindner: Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 130, 165 (2002).

    Article  CAS  Google Scholar 

  40. S. Scheinert and W. Schliefke: Analyzes of filed effect devices based on poly-(3-octoylthiophene). Synth. Met. 139, 501 (2003).

  41. P.J. Brown, H. Sirringhaus, M. Harrison, M. Shkunov, and R.H. Friend: Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys. Rev. B 63, 125204 (2001).

    Article  Google Scholar 

  42. A.R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters: Fieldeffect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37 (1997).

    Article  CAS  Google Scholar 

  43. G. Paasch: Transport in doped conjugated polymers with polarons and bipolarons forming complexes with counter ions. Solid State Ionics 169, 87 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, T., Paasch, G. & Scheinert, S. Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors. Journal of Materials Research 19, 2014–2027 (2004). https://doi.org/10.1557/JMR.2004.0265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0265

Navigation