Skip to main content
Log in

From polymer transistors toward printed electronics

  • Reviews—Organic Electronics Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Printed organic circuits have the potential to revolutionize the spread of electronic applications. This will be enabled by inexpensive and fast fabrication with printing techniques using soluble organic materials. Two main challenges have to be mastered on the way towards printed electronics. First, the development of stable transistors and an adapted chip design for organic materials, and second, the development of a reliable fabrication process. We present our results on high performance polymer transistors, mainly based on poly-3alkylthiophene (P3AT) as semiconducting material. Fast circuits up to 200 kHz and stable circuits with operation lifetimes of more than 1000 h under ambient conditions without any encapsulation are shown. We also report on a fully printed, all organic ring oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Shirakawa: The discovery of polyacetylene film: The dawning of an era of conducting polymers, in Nobel Lectures, Chemistry 1996–2000, edited by Ingmar Grenthe (World Scientific Publishing Co., Singapore, 2003), p. 453.

  2. A.J. Heeger: Semiconducting and metallic polymers: The fourth gerneration of polymeric materials, in Nobel Lectures, Chemistry 1996–2000, edited by Ingmar Grenthe (World Scientific Publishing Co., Singapore, 2003), p. 380.

  3. A.G. MacDiarmid: Synthetic metals: A novel role for organic polymers, in Nobel Lectures, Chemistry 1996–2000, edited by Ingmar Grenthe (World Scientific Publishing Co., Singapore, 2003), p. 427.

  4. A. Ullmann, J. Ficker, W. Fix, H. Rost, W. Clemens, I. McCulloch, and M. Giles: High Performance Organic Field-Effect Transistors and Integrated Inverters, in Electronic, Optical and Optoelectric Polymers and Oligomers, edited by G.E. Jabbour and N.S. Sariciftci (Mater. Res. Soc. Symp. Proc. 665, Warrendale, PA, 2002), p. 265, C7.5.

  5. C.D. Dimitrakopoulos and D.J. Mascaro: Organic thin-film transistors: A review of recent advances. BM J.RES. DEV. 45, 11 (2001).

  6. T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith, and T.D. Jones, in Organic and Polymeric Materials and Devices, edited by P.W.M. Blom, N.C. Greenham, C.D. Dimitrakopoulos, and C.D. Frisbie (Mat. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), p. 169, L6.5.

  7. W. Clemens and W. Fix: From Organic Transistors to Plastic Chips. Phys. J. 2, 31 (2003).

  8. H. Sirringhaus, A.R. Brown, R.H. Friend, M.M. Nielsen, K. Beechgard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and D.M. de Leeuw: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

  9. S.M. Sze, Physics of Semiconductor Devices (J.Wiley & Sons, NewYork, 1981).

  10. H. Rost, A. Bernds, W. Clemens, W. Fix, J. Ficker, A. Ullmann, S.R. Moreno, and I. McCulloch: All-Polymer Organic Field Effect Transistors, in Proc. Mat. Week, edited by Werkstoffwoche-Partnerschaft GbR (CD published by Werkstoff-Informationsgesellschaft, Frankfurt, Germany, 2002).

  11. W. Fix, A. Ullmann, J. Ficker, and W. Clemens: Fast and stable polymer electronic circuits, edited by J. DeMaria. Symposium on Optical Science and Technology, No. 5217-01 (SPIE, San Diego, CA, 2003).

  12. W. Fix, A. Ullmann, D. Zipperer, and W. Clemens: Fast and stable polymer electronic circuits, presented at SPIE’s 48th Annual Meeting 5217-01 (2003)

  13. G.H. Gelinck, T.C.T. Geuns, and D.M. de Leeuw: High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487 (2000).

    Article  CAS  Google Scholar 

  14. B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, and W. Li: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).

    Article  CAS  Google Scholar 

  15. D.J. Gundlach, L. Zhou, J.A. Nichols, J.-R. Huang, C.D. Sheraw, and T.N. Jackson, Organic Thin Film Phototransistors and Fast Circuits, International Electron Devices Meeting Technical Digest, 34.1.1 (2001).

  16. W. Fix, A. Ullmann, J. Ficker, H. Rost, W. Clemens, D. Brennan, D. Welsh, and J. O’Brien: Fast polymer integrated circuits based on a polyfluorene derivative, in Proc. ESSDERC 2002, edited by G. Baccarani, E. Gnani, and M. Rudan (University of Bologna, Bologna, Italy, 2002), pp. 527–529.

  17. M.S.A. Abdou, F.P. Orfino, Z.W. Xie, M.J. Deen, and S. Holdcroft: Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s. Adv. Mater. 6, 838 (1994).

    Article  CAS  Google Scholar 

  18. Y. Ohmori, K. Muro, H. Takahashi, M. Uchida, T. Kawai, and K. Yoshino: Gas-sensitive Schottky gated field effect transistors utilizing poly(3-alkylthiophene) films. Jpn. J. Appl. Phys. 30, L1247 (1991).

  19. H. Sirringhaus, N. Tessler, and R.H. Friend: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).

    Article  CAS  Google Scholar 

  20. G. Horowitz, F. Deloffre, F. Garnier, R. Hajlaoui, M. Hmyene, and A. Yassar: All-organic field-effect transistors made of pconjugated oligomers and polymeric insulators. Synth. Met. 54, 435 (1993).

    Article  CAS  Google Scholar 

  21. G. Horowitz: Origin of the ohmic current in organic field-effect transistors. Adv. Mater. 8, 177 (1996).

  22. Z. Xie, M.S.A. Abdou, X. Lu, M.J. Deen, and S. Holdcroft: Electrical characteristics and photolytic tuning of poly(3-hexylthiophene) thin film metal-insulator-semiconductor field-effect transistors (MISFETs). Can. J. Phys. 70, 1171 (1992).

    Article  CAS  Google Scholar 

  23. D.M. Taylor, H.L. Gomes, A.E. Underhill, S. Edge, and P.I. Clemenson: Effect of oxygen on the electrical characteristics of field effect transistors formed from electrochemically deposited films of poly(3-methylthiophene). J. Phys. D: Appl. Phys. 24, 2032 (1991).

    Article  CAS  Google Scholar 

  24. P. Ostoja, S. Guerri, M. Impronata, P. Zabberoni, R. Danieli, S. Rossini, C. Taliani, and R. Zamboni: Instability in electrical performance of organic semiconductor devices Adv. Mat. Opt. Elec. 1, 127 (1992).

    Article  Google Scholar 

  25. G. Horowitz, X. Peng, D. Fichou, and F. Garnier: The oligothio-phene-based field-effect transistor: How it works and how to improve it. J. Appl. Phys. 67, 528 (1990).

    Article  Google Scholar 

  26. F. Mohammad, P.D. Calvert, and N.C. Billingham: FT-IR studies on thermal degradation of electrically conducting polymers. Synth. Met. 66, 33 (1994).

    Article  CAS  Google Scholar 

  27. M.S.A. Abdou and S. Holdcroft: Solid-state photochemistry of p-conjugated poly(3-alkylthiophenes). Can. J. Chem. 73, 1893 (1995).

  28. W.A. Schoonveld, J.B. Oostinga, J. Vrijmoeth, and T.M. Klapwijk: Charge trapping instabilities of sexithiophene thin film transistors. Synth. Met. 101, 608 (1999).

    Article  CAS  Google Scholar 

  29. J. Ficker, A. Ullmann, W. Fix, H. Rost, and W. Clemens: Stability of polythiophene-based transistors and circuits. J. Appl. Phys. 94, 2638 (2003).

    Article  CAS  Google Scholar 

  30. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava: All-polymer field-effect transistor realized by printing techniques. Science 265, 1684 (1994).

    Article  CAS  Google Scholar 

  31. W.S. Beh, I.T. Kim, D. Qin, Y. Xia, and G.M. Whitesides: Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication Adv. Mat. 11(12), 1038 (1999).

  32. J.A. Rogers, Z. Bao, and V.R. Raju: Nonphotolithographic fabrication of organic transistors with micron feature sizes. Appl. Phys. Lett. 72(21), 2716 (1998).

  33. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava: All-polymer field-effect transistor realized by printing techniques. Science 265, 1684 (1994).

    Article  CAS  Google Scholar 

  34. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E.P. Woo: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).

    Article  CAS  Google Scholar 

  35. G.B. Blanchet, Y-L. Loo, J.A. Rogers, F. Gao, and C.R. Fincher: Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82(3), 463 (2003).

  36. J.A. Rogers, Z. Bao, A. Makhija, and P. Braun: Process suitable for reel-to-reel production of high-performance organic transistors and circuits. Adv. Mat. 11(9), 741 (1999).

  37. J.A. Rogers, Z. Bao, M. Meier, A. Dodabalapur, O.J.A. Schueller, and G.M. Whitesides: Printing, molding, and near-field photolithographic methods for patterning organic lasers, smart pixels and simple circuits. Synth. Met. 115, 5 (2000).

    Article  CAS  Google Scholar 

  38. Z. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, and A.J. Lovinger: High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 9(6), 1299 (1997).

  39. T. Kawase, H. Sirringhaus, R.H. Friend, and T. Shimoda: Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601 (2001).

  40. M. Berggren, T. Kugler, T. Remonen, D. Nilsson, C. Miaoxiang, and P. Norberg: Paper electronics and electronic paper. Proc. Polytronic, edited by R. Aschenbremer, IEEE (Potsdam, Germany, 2001), p. 300.

  41. M. Chen, D. Nilsson, T. Kugler, M. Berggren, and T. Remonen: Bi-stable and dynamic current modulation in electrchemical organic transistors. Appl. Phys. Lett. 81(11), 2011 (2002).

  42. D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth, and M. Berggren: Bi-stable and dynamic current modulation in electrchemical organic transistors. Adv. Mater. 14(1), 51 (2002).

  43. A. Knobloch, A. Bernds, and W. Clemens: Printed polymer transistors. Proc. Polytronic, edited by R. Aschenbremer, IEEE (Potsdam, Germany, 2001), p. 84.

  44. A. Knobloch, A. Bernds, and W. Clemens: An approach towards the printing of polymer circuits, in Electronics on Unconventional SubstratesElectrotextiles and Giant-Area Flexible Circuits, edited by M.S. Shur, P.M. Wilson, and D. Urban (Mater. Res. Soc. Symp. Proc. 736, Warrendale, PA, 2003), p. 277, D6.3.1.

  45. A. Manuelli, A. Knobloch, A. Bernds, and W. Clemens: Applicability of coating techniques for the production of organic field effect transistors. Proc. Polytronic, edited by Z. Illyefalvi-Vitez, IEEE (Zalaegerszeg, Hungary, 2002), p. 201.

  46. A. Knobloch, A. Manuelli, A. Bernds, and W. Clemens: Fully printed integrated circuits from solution processable polymers. (Accepted for publication in J. Appl. Phys.).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Clemens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemens, W., Fix, W., Ficker, J. et al. From polymer transistors toward printed electronics. Journal of Materials Research 19, 1963–1973 (2004). https://doi.org/10.1557/JMR.2004.0263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0263

Navigation