Skip to main content
Log in

Thermodynamic modeling of the Ni–Al–Ga–N system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Isothermal sections in the Ni–Al–Ga–N quaternary phase diagram were calculated to provide a greater understanding of interfacial reactions between Ni contacts and AlxGa1−xN. The calculations were performed employing a thermodynamic database of the Ni–Al–Ga–N system that was constructed by combining the six binary systems of the four component system. The model of the Ga–N binary system was created in this work. The models of the Ni–Ga and Ni–Al systems, both of which were taken from the literature, were modified to be compatible with one another. Thermodynamic data and phase boundaries for other binary systems were taken from the literature, as was information on portions of the Al–Ga–N and Ni–Al–Ga phase diagrams. The calculated sections reveal that during reaction between Ni and AlxGa1−xN, Ni is favored to react with the GaN component of the semiconductor alloy, leaving an Al-enriched AlxGa1−xN. These predictions are consistent with a recent analysis of the Ni, Al, and Ga elemental distributions across the interface between a Ni thin film and an Al0.47Ga0.53N epitaxial layer following annealing at 850 °C. Consideration of the thermodynamic driving forces suggests that this may be a general phenomenon existing in other metal–Al–Ga–N systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, S. Pearton, and G. Fasol: The Blue Laser Diode -Second Edition, (Springer, Berlin, Germany, 2000).

    Google Scholar 

  2. S. Nakamura, M. Senoh, and T. Mukai: High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl Phys. Lett, 62, 2390 (1993).

    CAS  Google Scholar 

  3. S.J. Pearton and F. Ren: GaN electronics. Advanced Materials 12, 1571(2000).

    CAS  Google Scholar 

  4. H. Xing, S. Keller, Y-F. Wu, L. McCarthy, I.P. Smorchkova, D. Buttari, R. Coffie, D.S. Green, G. Parish, S. Heikman, L. Shen, N. Zhang, J.J. Xu, B.P. Keller, S.P. DenBaars, and U.K. Mishra: Gallium nitride based transistors. J. Phys.: Condens, Matter 13, 7139 (2001).

    CAS  Google Scholar 

  5. Y-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Dev, 48, 586 (2001).

    CAS  Google Scholar 

  6. S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo: Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89N Schottky diodes. IEEETrans.Electron. Dev. 48, 573 (2001).

    CAS  Google Scholar 

  7. T. Egawa, G-Y. Zhao, H. Ishikawa, M. Umeno, and T. Jimbo: Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire. IEEETrans.Electron DevDev. 48, 603 (2001).

    CAS  Google Scholar 

  8. E.D. Readinger, B.P. Luther, S.E. Mohney, and E.L. Piner: Environmental aging of Schottky contacts to n-AlGaN. J. Appl. Phys. 89, 7983 (2001).

    CAS  Google Scholar 

  9. L. Zhou, F.A. Khan, G. Cueva, V. Kumar, I. Adesida, M.R. Sardela, Jr., and F.D. Auret: Thermal stability of rhenium Schottky contacts on n-type AlxGa1_xN. Appl. Phys. Lett. 81, 1624 (2002).

    CAS  Google Scholar 

  10. V. Kumar, D. Selvanathan, A. Kuliev, S. Kim, J. Flynn, and I. Adesida: Characterisation of iridium Schottky contacts on n-AlxGa1-x N. Electron. Lett. 39, 747 (2003).

    CAS  Google Scholar 

  11. M. Kuball, S. Rajasingam, A. Sarua, M.J. Uren, T. Martin, B.T. Hughes, K.P. Hilton, and R.S. Balmer: Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Appl. Phys. Lett. 82, 124 (2003).

    CAS  Google Scholar 

  12. T.V. Blank, Y.A. Goldberg, E.V. Kalinina, O.V. Konstantinov, A.E. Nikolaev, A.V. Fomin, and A.E. Cherenkov: Mechanism of the current flow in Pd-(heavily doped p-AlxGa1_xN) ohmic contact. Semiconductors35,529(2001).

    CAS  Google Scholar 

  13. B-H. Jun, H. Hirayama, and Y. Aoyagi: Effect of thermal annealing on the Pd/Au Contact to p-type Al0 15Ga0.85N. Jpn. J. Appl. Phys. 41, 581 (2002).

    CAS  Google Scholar 

  14. B.A. Hull, S.E. Mohney, U. Chowdhury, R.D. Dupuis, D. Gotthold, R. Birkhahn, and M. Pophristic: Contacts to high aluminum fraction p-type aluminum gallium nitride, in GaN and Related alloys—2002, edited by C. Wetzel, E.T. Yu, J.S. Speck, A.Rizzi, and Y. Arakawa (Mater. Res. Soc. Symp. Proc. 743, Warrendale, PA, 2003), p. L12.2.

    Google Scholar 

  15. B.A. Hull: An investigation of the processing and properties of ohmic contacts to p-type aluminum gallium nitride. Ph.D. Thesis, The Pennsylvania State University (2004).

  16. B.A. Hull, S.E. Mohney, U. Chowdhury, and R.D. Dupuis: Compositional shift in Al xGa1-x N beneath annealed metal contacts. J. Vac. Sci. Technol. B 22, 654 (2004).

    CAS  Google Scholar 

  17. J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, and B. Sundman: Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 26, 273 (2002).

    CAS  Google Scholar 

  18. S. Ochiai, Y. Oya, and T. Suzuki, Bull. P.M.E. (T.I.T.) 52, 1 (1983).

    Google Scholar 

  19. C-H. Jan. Interfacial phenomena in the contact metallization of GaAs with Ni-based intermetallic alloys. Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin (1991).

  20. M. Hillert and L-I. Staffanson: Acta Chem. Scand. 24, 3618 (1970).

    CAS  Google Scholar 

  21. Scientific Group Thermodata Europe (SGTE): Thermodynamic Properties of Inorganic Materials, Lehrstuhl fur Theoretische Huttenkunde, Ed. Landolt-Boernstein New Series, Group IV, Springer-Verlag, Berlin, Germany 19, (1999).

    Google Scholar 

  22. I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G Chart, and T. Anderson: A binary database for III-V compound semiconductor systems. Calphad. 18, 177 (1994)

    CAS  Google Scholar 

  23. W. Huang and Y.A. Chang: A thermodynamic analysis of the Ni-Al system. Intermetallics 6, 487 (1998).

    CAS  Google Scholar 

  24. W. Huang and Y.A. Chang: A thermodynamic analysis of the Ni-Al system. Intermetallics 7,625(1999).

    CAS  Google Scholar 

  25. I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman: Thermodynamic assessment of the Al-Ni system. J. All oys and Comp. 247, 20 (1997).

    CAS  Google Scholar 

  26. J. Grobner, R. Wenzel, G.G. Fischer, and R. Schmid-Fetzer: Thermodynamic calculation of the binary systems M-Ga and investigation of ternary M-Ga-N phase equilibria (M = Ni, Co, Pd, Cr). J. Phase Equil. 20, 615 (1999).

    Google Scholar 

  27. W.B. Pearson and D.M. Rimek: Can. J. Phys. 35, 1228 (1957).

    CAS  Google Scholar 

  28. S. Martosudirjo and J.N. Pratt: Enthalpies of formation of solid nickel-gallium and nickel-germanium alloys. Thermochim. Acta. 17, 183 (1976).

    CAS  Google Scholar 

  29. B. Predel and W. Vogelbein: Thermodynamische untersuchung der systeme eisen—gallium und kobalt—gallium. Thermochim. Acta. 13, 133 (1975).

    CAS  Google Scholar 

  30. I. Katayama, S. Igi, and Z. Kozuka: J. Jpn. Inst. Met. 38, 332 (1973).

    Google Scholar 

  31. H.A. Wriedt: In Phase Diagrams of Binary Nickel Alloys, edited by P. Nash (ASM International, Materials Park, OH, 1991) pp. 213–216.

    Google Scholar 

  32. A. Fernandez Guillermet and K. Frisk: International J. of Ther-mophysics 12, 417 (1991).

    Google Scholar 

  33. A.V. Davydov and T.J. Anderson: Thermodynamic assessment of the gallium-nitrogen system. Phys. Status Solid 188, 407 (2001).

    CAS  Google Scholar 

  34. I. Barin: Thermochemical Data of Pure Substances, 2nd ed. (VCH, Weinheim, Germany 1993).

    Google Scholar 

  35. D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, and R.H. Schumm. Selected Values of Chemical Thermodynamic Properties, NBS Technological Note 270-3, National Bureau of Standards, Washington, D.C. (1968).

    Google Scholar 

  36. O. Kubaschewski, C.B. Alcock, and P.J. Spencer. Materials Thermochemistry, 6th ed. (Pergamon Press, Oxford, U.K., 1993).

    Google Scholar 

  37. H. Hahn and R. Juza: Z. Anorg. Allg. Chem. 244, 111 (1904).

    CAS  Google Scholar 

  38. M.R. Ranade, F. Tessier, A. Novrotsky, V.J. Leppert, S.H. Risbud, F.J. DiSalvo, and CM. Balkas: Enthalpy of gormation of gallium nitride. J.Phys.Chen B 104, 4060 (2000).

    CAS  Google Scholar 

  39. R. Madar, G. Jacob, J. Hallais, and R. Fruchart: High pressure solution growth of GaN. J. Cryst. Growth 31, 197 (1975).

    CAS  Google Scholar 

  40. J. Karpinski and S. Porowski: High pressure thermodynamics of GaN. J. Cryst. Growth 66, 11 (1984).

    CAS  Google Scholar 

  41. X-L. Chen, Y-C. Lan, J-K. Liang, X-R. Cheng, Y-P. Xu, T. Xu, P-Z. Jiang, and K-Q. Lu: Chin. Phys. Lett. 16, 107 (1999).

    CAS  Google Scholar 

  42. J. Unland, B. Onderka, A. Davydov, and R. Schmid-Fetzer: Thermodynamics and phase stability in the Ga-N system. J. Cryst. Growth 256, 33 (2003).

    CAS  Google Scholar 

  43. T. Takayama, M. Yuri, K. Itoh, T. Saba, and J.S. Harris, Jr.: Analysis of phase-separation region in wurtzite group III nitride quaternary material system using modified valence force field model. J. Cryst. Growth 222, 29 (2001).

    CAS  Google Scholar 

  44. T. Takayama, M. Yuri, K. Itoh, and J.S. Harris, Jr.: Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model. J. Appl. Phys. 90, 2358 (2001).

    CAS  Google Scholar 

  45. S.E. Mohney and X. Lin: Estimated phase equilibria in the transition metal-Ga-N systems: consequences for electrical contacts to GaN. J. Electron. Mater. 25, 811 (1996).

    CAS  Google Scholar 

  46. R.J. Sime and J.L. Margrave: Gaseous metal nitrides. II. the vapor pressure of GaN(s) and evidence for a complex gaseous nitride. J. Phys. Chem. 60, 810 (1956).

    CAS  Google Scholar 

  47. M.R. Lorenz and B.B. Binkowski: J. Electrochem Soc. 109,24 (1962).

    CAS  Google Scholar 

  48. Y. Morimoto: J. Electrochem. Soc. 121, 1383 (1974).

    CAS  Google Scholar 

  49. G. Jacob, R. Madar, and J. Hallais: Optimized growth conditions and properties of n-type and insulating GaN. Mater.Res.Bull. 11, 445 (1976).

    CAS  Google Scholar 

  50. M. Furtado and G. Jacob: Study on the influence of annealing effects in GaN VPE. J. Crvstal Growth 64, 257 (1983).

    CAS  Google Scholar 

  51. A. Pisch and R. Schmid-Fetzer: In situ decomposition study of GaN thin films. J. Crvstal Growth 187, 329 (1998).

    CAS  Google Scholar 

  52. A. Rebey, T. Boufaden, and B. El Jani: In situ optical monitoring of the decomposition of GaN thin films. J. Crystal Growth 203, 12 (1999).

    CAS  Google Scholar 

  53. K.O. Schweitz and S.E. Mohney: Phase equilibria in transition metal Al-Ga-N systems and thermal stability of contacts toAlGaN. J. Electron. Mater. 30, 175 (2001).

    CAS  Google Scholar 

  54. P. Nash, M.F. Singleton, and J.L. Murray: in Phase Diagrams of Binary Nickel Alloys, edited by P. Nash (ASM International, Metals Park, OH, 1991) p. 3.

    Google Scholar 

  55. S.Y. Lee and P. Nash: in Phase Diagrams of Binary Nickel Alloys, edited by P. Nash (ASM International, Metals Park, OH, 1991) p. 133.

    Google Scholar 

  56. Handbook of Chemistry and Physics–71st Edition, edited by D.R. Lide, CRC Press, Boca Raton (1990).

  57. S.V. Meschel and O.J. Kleppa: Determination of the standard enthalpies of formation of Pd2Ga and PdGa by high-temperature direct synthesis calorimetry. Thermochim. Acta. 292, 13 (1997).

    CAS  Google Scholar 

  58. S.V. Meschel and O.J. Kleppa: Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry. J. Alloys Corny. 191, 111 (1993).

    CAS  Google Scholar 

  59. B. Predel and D.W. Stein: Enthalpies of formation of binary compounds of gallium with copper, silver and gold and the analysis of thermodynamic properties of 3/2-electron-compounds. Acta Met-all, 20, 681 (1972).

    CAS  Google Scholar 

  60. B. Predel and U. Schallner: Thermodynamische untersuchung der systeme aluminium-antimon und aluminium-gold. Mater. Sci. Engr, 5, 210 (1970).

    CAS  Google Scholar 

  61. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals: Transition Metal Alloys, (Elsevier, Amsterdam 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, B.A., Mohney, S.E. & Liu, ZK. Thermodynamic modeling of the Ni–Al–Ga–N system. Journal of Materials Research 19, 1742–1751 (2004). https://doi.org/10.1557/JMR.2004.0218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0218

Navigation