Skip to main content
Log in

Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bulk austenitic stainless steels (SS) have a face-centered cubic (fcc) structure. However, sputter deposited films synthesized using austenitic stainless steel targets usually exhibit body-centered cubic (bcc) structure or a mixture of fcc and bcc phases. This paper presents studies on the effect of processing parameters on the phase stability of 304 and 330 SS thin films. The 304 SS thin films with in-plane, biaxial residual stresses in the range of approximately 1 GPa (tensile) to approximately 300 MPa (compressive) exhibited only bcc structure. The retention of bcc 304 SS after high-temperature annealing followed by slow furnace cooling indicates depletion of Ni in as-sputtered 304 SS films. The 330 SS films sputtered at room temperature possess pure fcc phase. The Ni content and the substrate temperature during deposition are crucial factors in determining the phase stability in sputter deposited austenitic SS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D. Dahlgren: Equilibrium phases in 304L stainless steel obtained by sputter-deposition. Metall. Trans. 1, 3095 (1970).

    CAS  Google Scholar 

  2. M.J. Godbole, A.J. Pedraza, L.F. Allard, and G. Geesey: Characterization of sputter-deposited 316L stainless steel films. J. Mater. Sci. 27, 5585 (1992).

    Article  CAS  Google Scholar 

  3. S. Malavasi, A. Oueldennaoua, M. Foos, and C. Frantz: Meta-stable amorphous and crystalline phase in physical vapor deposited Fe-(Cr)-Ni-(C) deposits. J. Vac. Sci. Technol. A5, 1888 (1987).

    Article  Google Scholar 

  4. J. Childress, S.H. Liou, and C.L. Chien: Ferromagnetism in meta-stable 304 stainless steel with bcc structure. J. Appl. Phys. 64, 6059 (1988).

    Article  CAS  Google Scholar 

  5. J.P. Eymery and R. Krishnan: On some magnetic properties of 304 stainless steel films. J. Magn. Magn. Mater. 104–107, 1785 (1992).

    Article  Google Scholar 

  6. T.F. Kelly, M. Cohen, and J.B. Vander Sande: Rapid solidification of a droplet-processed stainless steel. Metall. Trans. A15, 819 (1984).

    Article  Google Scholar 

  7. R.P. Reed, “Martensitic Phase Transformation,” in Materials at Low Temperatures, edited by R.P. Reed and A.F. Clark (American Society for Metals, Carnes Publication Services, Metals Park, OH, 1983), p. 299.

    Google Scholar 

  8. E.S. Machlin, in Materials Science in Microelectronics (Giro Press, Croton-on-Hudson, New York, 1995), p. 157.

    Google Scholar 

  9. M.J. Godbole, A.J. Pedraza, J.W. Park, and G. Geesey: The crystal structures of stainless steel films sputter-deposited on austenitic stainless steel substrates. Scripta Metall. Mater. 28, 1201 (1993).

    Article  CAS  Google Scholar 

  10. X. Zhang, A. Misra, H. Wang, T.D. Shen, J.G. Swadener, J.D. Embury, H. Kung, R.G Hoagland, and M. Nastasi: Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers. J. Mater. Res. 18, 1600 (2003).

    Article  CAS  Google Scholar 

  11. GG. Stoney: Proc. R. Soc. London A82, 172 (1909).

    Google Scholar 

  12. L.R. Doolittle: Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Methods Physics Research B9, 344 (1985).

    Article  CAS  Google Scholar 

  13. L.R. Doolittle: A semiautomatic algorithm for Rutherford back-scattering analysis. Nucl. Instrum. Methods Physics Research B15, 227 (1986).

    Article  CAS  Google Scholar 

  14. X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury: Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater 52, 995 (2004).

    Article  CAS  Google Scholar 

  15. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096 (2004).

    Article  CAS  Google Scholar 

  16. S.L. Duan, J.O. Artman, B. Wong, and D.E. Laughlin: Study of the growth characteristics of sputtered Cr thin films. J. Appl. Phys. 67, 4913 (1990).

    Article  CAS  Google Scholar 

  17. B. Okolo, P. Lamparter, U. Welzel, and E.J. Mittemeijer: Stress, texture, and microstructure in niobium thin films sputter deposited onto amorphous substrates. 95, 466 (2004).

    CAS  Google Scholar 

  18. N. Schell, J.H. Petersen, J. Bøttiger, A. Mucklich, J. Chevallier, K.P. Andreasen, and F. Eichhorn: On the development of texture during growth of magnetron-sputtered CrN. Thin Solid Films 426, 100 (2003).

    Article  CAS  Google Scholar 

  19. U.C. Oh, J.H. Je, and J.Y. Lee: Change of the critical thickness in the preferred orientation of TiN films. J. Mater. Res. 10, 634 (1995).

    Article  CAS  Google Scholar 

  20. J. Pelleg, L.Z. Zevin, S. Lungo, and N. Croitoru: Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films 197, 117 (1991).

    Article  CAS  Google Scholar 

  21. C.V. Thompson: Texture evolution during grain growth in poly-crystalline films. Scripta Metall. Mater. 28, 167 (1993).

    Article  CAS  Google Scholar 

  22. F. Adibi, I. Petrov, J.E. Greene, L. Hultman, and J-E. Sundgren: Effects of high-flux low-energy (20–100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti0 5Al0 5N alloys grown by ultra-high-vacuum reactive magnetron sputtering. J.Appl. Phys 73, 8580 (1993).

    Article  CAS  Google Scholar 

  23. N. Schell, W. Matz, J. Bøttiger, J. Chevallier, and P. Kringhøj: Development of texture in TiN films by use of in situ synchrotron X-ray scattering. J Appl. Phys. 91, 2037 (20()2).

    Article  CAS  Google Scholar 

  24. Alloy Phase Diagram: ASM Handbook (1990), Vol. 3, edited by ASM International Handbook Committee (ASM International, Materials Park, OH).

  25. P.J. Grundy and J.M. Marsh: Amorphous thin films of stainless steel. J. Mater. Sci. Lett. 13, 677 (1978).

    CAS  Google Scholar 

  26. J.P. Eymery, N. Merakeb, Ph. Goudeau, A. Fnidiki, and B. Bouzabata: A Mossbauer comparative study of the local environment in metastable 304 stainless steel films depending on the preparation mode. J Magn. Magn. Mater 256, 227 (2003).

    Article  CAS  Google Scholar 

  27. S. Sarkar, C. Bansal, and A. Chatterjee: Gibbs-Thomson effect in nanocrystalline Fe-Ge. Phs.Rev.B. 62, 3218 (2000).

    Article  CAS  Google Scholar 

  28. O-H. Kwon, S-H. Ahn, J-G. Kim, and J-G. Han: An optimized condition for corrosion protection of type 316L films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution. J. Mater. Sci. Lett. 21, 41 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Misra, A., Schulze, R.K. et al. Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films. Journal of Materials Research 19, 1696–1702 (2004). https://doi.org/10.1557/JMR.2004.0215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0215

Navigation