Skip to main content
Log in

Facile method of infilling photonic silica templates with rare earth element oxide phosphor precursors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method for preparing rare-earth element-doped yttrium oxide phosphor photonic band gap crystals (PBG) is described, which obviates the necessity for multiple infilling of the opal-like template. The method utilizes (i) the re-dissolving and the concentration of previously precipitated spherical phosphor particles made by homogeneous precipitation methods into a viscous precursor phosphor solution, and (ii) formation of an opal-like template of polystyrene or silica spheres. A procedure is outlined that permits the precursor solution to be drawn into the template in a controlled manner that can be easily monitored using an optical microscope. Attenuation of the strong, red cathodoluminescent emission is observed in Y2O3:Eu3+ phosphor PBG crystals that are engineered to have a stopband overlapping the emission bands in the red region. This attenuation results from Bragg diffraction of the light emitted within the PBG phosphor crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  Google Scholar 

  2. S. John: John Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  Google Scholar 

  3. J.D. Joannopopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).

    Google Scholar 

  4. A. van Blaaderen, R. Ruel, and P. Wiltius: Template-directed colloidal crystallization. Nature 385, 321 (1997).

    Article  Google Scholar 

  5. D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini: Localization of light in a disordered medium. Nature, 390, 671 (1997).

    Article  CAS  Google Scholar 

  6. M.I. Martinez, T. Ireland, G.R. Fern, J. Silver, and R. Withnall: “Luminescent properties of rare-earth doped photonic crystals,” in Technical Digest of Quantum Electronics and Photonics 15 Conference, Glasgow, 3rd-6th September, 2001, p. 17.

  7. R. Withnall, T.G. Ireland, M.I. Martinez-Rubio, G.R. Fern, and J. Silver: Rare earth element anti-Stokes emission from three inverse photonic lattices. J. Mod. Opt. 49, 965 (2002).

    Article  CAS  Google Scholar 

  8. J. Silver, R. Withnall, M.I. Martinez-Rubio, T.G. Ireland, and G.R. Fern: Photonic crystals for display applications. SID Tech. Digest 33, 16 (2002).

    Article  CAS  Google Scholar 

  9. J. Silver, R. Withnall, M.I. Martinez-Rubio, T.G. Ireland, and G.R. Fern: The first cathodoluminescence spectra from photonic band gap phosphors for low voltage applications. SID Tech. Digest 34, 414 (2003).

    Article  CAS  Google Scholar 

  10. R. Withnall, M.I. Martinez-Rubio, G.R. Fern, T.G. Ireland, and J. Silver: Photonic phosphors based on cubic Y2O3:Tb3+ infilled into a synthetic opal lattice. J. Opt, A: Pure Appl. Opt 5, S81 (2003).

    Article  CAS  Google Scholar 

  11. S. John and T. Quang: Collective switching and inversion without fluctuation of two-level atoms in confined photonic system. Phys. Rev.Lett 78, 1888 (1997).

    Article  CAS  Google Scholar 

  12. J. Silver and R. Withnall: Patent on “Photonic Phosphors and Devices,” Patent No. PCT/GB2003/001486 (2003).

  13. K.E. Davis, W.B. Russel, and W.J. Glantschnig: Disorder-to-order transition in settling suspensions of colloidal silica-x-ray measurements. Science 245, (1989).

    Google Scholar 

  14. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, and K. Nagayama: Mechanism of formation of two-dimensional crystals from latex particles on substrates. Lang-muir 8, 3183 (1992).

    Article  CAS  Google Scholar 

  15. O.D. Velev, N.D. Denkov, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, and K. Nagayama: Mechanism of formation of two-dimensional crystal from latex particles on substrata. Prog. Coll. Polym. Sci. 93, (1993).

    Google Scholar 

  16. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, and K. Nagayama: Two dimensional crystallization. Nature 361, 26 (1993).

    Article  Google Scholar 

  17. O.D. Velev, T.A. Jede, R.F. Lobo, and A.M. Lenhoff: Porous silica via colloidal crystallization. Nature 389, 447 (1997).

    Article  CAS  Google Scholar 

  18. SV. Gaponenko, A.M. Kapitonov, V.N. Bogomolov, A.V. Prokofiev, E. Eymuller, and A.L. Rogach: Electrons and photons in mesoscopic structures: quantum dots in a phototonic world. JEPT. Lett. 68, 142 (1988).

    Google Scholar 

  19. O.D. Velev and A.M. Lenhoff: Colloid crystals as templates for porous materials. Curr. Opin. Coll. Interf. Sci. 5, 56 (2000).

    Article  CAS  Google Scholar 

  20. F. Meseguer, A. Blanco, H. Miguez, F. Garcia-Santamaria, M. Ibisate, and C. Lopez: Synthesis of inverse opals. Coll. Surf. A. 202, 281 (2002).

    Article  CAS  Google Scholar 

  21. A. Stein: Sphere templating methods for periodic porous solids. Micropor. Mesopor. Mater. 44, 227 (2001).

    Article  Google Scholar 

  22. A.F. Konderink, P.M. Johnson, J.F. Galisteo-Lopez, and W.L. Vos: Three dimensional photonic crystals as a cage for light. C.R. Phys. 3, 67 (2002).

    Article  Google Scholar 

  23. O.D. Velev and E. Kaler: Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 12, 531 (2000).

    Article  CAS  Google Scholar 

  24. S.H. Park and Y. Xia: Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10, 1045 (1998).

    Article  CAS  Google Scholar 

  25. H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Fornes: Germanium FCC structures from a colloidal crystal template. Langmuir16, 4405 (2000).

    Article  CAS  Google Scholar 

  26. B.T. Holland, C.F. Blanford, and A. Stein: Synthesis of macro-porous minerals with highly ordered three-dimensional arrays of spheroidal void. Science 281, 538 (1998).

    Article  CAS  Google Scholar 

  27. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer H. Miguez, J.P. Mondia, C.A. Ozin, O. Toader, and H.M. van Driel: Large scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap. Nature 405, 437 (2000).

    Article  CAS  Google Scholar 

  28. J.E.G.J. Wijnhoven and W.L. Vos: Preparation of photonic crystals made of air spheres in titania. Science 281, 802 (1998).

    Article  CAS  Google Scholar 

  29. P.V. Braun and P. Wiltius: Macroporous materials-electrochemically grown photonic crystals. CurrentOpinionCol. Interf. Sci. 7, 116 (2002).

    Article  CAS  Google Scholar 

  30. S. Shionoya and W.M. Yen: Phosphor Handbook (CRC Press, 2000).

    Google Scholar 

  31. K.A. Wickersheim and R.A. Lever: Luminescent behavior of the rare earths in yttrium oxide and related hosts. J. Electrochem. Soc. 111, 47 (1964).

    Article  CAS  Google Scholar 

  32. G.Y. Hong, B.S. Geon, Y.K. Yoo, and J.S. Yoo: Photolumines-cence characteristics of Y2O3:Eu phosphors by aerosol pyrolysis. J. Electrochem. Soc. 148, H161 (2001).

    Article  CAS  Google Scholar 

  33. H. Forest: Emission colour of Y2O3:Eu Phosphor. J. Electrochem. Soc. 120, 695 (1973).

    Article  CAS  Google Scholar 

  34. W. Stober, A. Fink, and E. Bohn: Controlled growth of monodis-perse silica spheres in the micron size range. J. Coll. Interf. Sci. 26, 62 (1968).

    Article  Google Scholar 

  35. X. Jing, T.G. Ireland, C. Gibbons, D.J. Barber, J. Silver, A. Vecht, G.R. Fern, P. Trogwa, and D. Morton: Control of Y2O3:Eu spherical particle, size, assembly properties, performance for FED and HDTV.J. Electrochem. Soc. 146, 4564 (1999).

    Article  Google Scholar 

  36. E. Matijevic: Colloid science of ceramic powders. Pure Appl. Chem. 60, 1479 (1988).

    Article  CAS  Google Scholar 

  37. A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T.G. Ireland J. Silver, A. Newport, and D. Barber: Engineering phosphors for field emission displays. J. Vac. Sci. Tech. B 17, 750 (1999).

    Article  CAS  Google Scholar 

  38. M.I. Martinez-Rubio, T.G. Ireland, G.R. Fern, M.J. Snowdon, and J. Silver: A new application for microgels: a novel method for the synthesis of spherical particles of Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acryllic acid. Langmuir 17, 7145(2001).

    Article  CAS  Google Scholar 

  39. T.G. Ireland, J. Silver, C. Gibbons, and A. Vecht: Facile self assembly of yttrium oxide europium phosphor from solution using a sacrificial micellar phase. Electrochem. Solid State Lett. 2, 52 (1999).

    Article  CAS  Google Scholar 

  40. H. Baranska, A. Labudzinska, and J. Terpinski: in Laser Raman Spectrometry (Ellis Horwood, Chichester, U.K., 1987), Chap. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Silver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, J., Ireland, T.G. & Withnall, R. Facile method of infilling photonic silica templates with rare earth element oxide phosphor precursors. Journal of Materials Research 19, 1656–1661 (2004). https://doi.org/10.1557/JMR.2004.0212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0212

Navigation