Skip to main content
Log in

On the Atomistic Simulation of Plastic Deformation and Fracture in Crystals

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tensile stretching of a two-dimensional model crystal was computationally studied using molecular statics simulations. Attention was directed to the atomistics of defect activities throughout the deformation history. It is shown that the incorporation of an initial point defect is able to trigger dislocation slip in a repetitive and controlled manner. The initial defect is also seen to have potential bearing on the formation of voiding damage that leads to ductile fracture of the crystal. Implications to the nanoscale mechanical behavior and its modeling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58, 11085 (1998).

    Article  CAS  Google Scholar 

  2. E.B. Tadmor, R. Miller, and R. Phillips, Nanoindentation and incipient plasticity, J. Mater. Res. 14, 2233 (1999).

    Article  CAS  Google Scholar 

  3. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B 67, 104105 (2003).

    Article  Google Scholar 

  4. O. Rodriguez de la Fuente, J.A. Zimmerman, M.A. Gonzalez, J. de la Figuera, J.C. Hamilton, W.W. Pai, and J.M. Rojo, Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations, Phys. Rev. Lett. 88, 036101 (2002).

    Article  CAS  Google Scholar 

  5. D. Feichtinger, P.M. Derlet, and H. Van Swygenhoven, Atomistic simulations of spherical indentations in nanocrystalline gold, Phys. Rev. B 67, 024113 (2003).

    Article  Google Scholar 

  6. B. deCelis, A.S. Argon, and S. Yip, Molecular dynamics simulation of crack tip processes in alpha-iron and copper, J. Appl. Phys. 54, 4864 (1983).

    Article  CAS  Google Scholar 

  7. E.Y. Baiguzin, A.I. Melker, and A.I. Mikhailin, Atomic mechanisms of fracture nucleation and fracture development in two-dimensional crystals in thermodynamic equilibrium. I. One-phase systems, Phys. Status Solidi. A 108, 205 (1988).

    Article  Google Scholar 

  8. M. Doyama, Simulation of plastic deformation of small iron and copper single crystals, Nucl. Instrum. Methods Phys. Res. B 102, 107 (1995).

    Article  CAS  Google Scholar 

  9. S.J. Zhou, D.M. Beazley, P.S. Lomdahl, and B.L. Holian, Largescale molecular dynamics simulations of three-dimensional ductile failure, Phys. Rev. Lett. 78, 479 (1997).

    Article  CAS  Google Scholar 

  10. D. Farkas, Atomistic studies of intrinsic crack-tip plasticity, MRS Bull. 25, 35 (2000).

    Article  CAS  Google Scholar 

  11. M. Ortiz, A.M. Cuitino, J. Knap, and M. Koslowski, Mixed atomistic-continuum models of material behavior: The art of transcending atomistics and informing continua, MRS Bull. 26, 216 (2001).

    Article  CAS  Google Scholar 

  12. J.G. Swadener, M.I. Baskes, and M. Nastasi, Molecular dynamics simulation of brittle fracture in silicon, Phys. Rev. Lett. 89, 085503 (2002).

    Article  CAS  Google Scholar 

  13. R.M. Lynden-Bell, Computer simulations of fracture at the atomic level, Science 263, 1704(1994).

  14. R.M. Lynden-Bell, A simulation study of induced disorder, failure and fracture of perfect metal crystals under uniaxial tension, J. Phys.: Condens. Matter 7, 4603 (1995).

    CAS  Google Scholar 

  15. T. Kitamura, K. Yashiro, and R. Ohtani, Atomic simulation on deformation and fracture of nano-single crystal of nickel in tension, JSME Int. J., Ser. A 40, 430 (1997).

    Google Scholar 

  16. P. Heino, H. Hakkinen, and K Kaski, Molecular-dynamics study of mechanical properties of copper, Europhys. Lett. 41, 273 (1998).

    Article  CAS  Google Scholar 

  17. P. Heino, H. Hakkinen, and K. Kaski, Molecular-dynamics study of copper with defects under strain, Phys. Rev. B 58, 641 (1998).

    Article  CAS  Google Scholar 

  18. R. Komanduri, N. Chandrasekaran, and L.M. Raff, Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel, Int. J. Mech. Sci. 43, 2237 (2001).

    Article  Google Scholar 

  19. M.F. Horstemeyer, M.I. Baskes, A. Godfrey, and DA. Hughes, A large deformation atomistic study examining crystal orientation effects on the stress-strain relationship, Inter. J. Plasticity 18, 203 (2002).

    Article  CAS  Google Scholar 

  20. B.L. Holian, A.F. Voter, N.J. Wagner, R.J. Ravelo, S.P. Chen, W.G. Hoover, C.G. Hoover, J.E. Hammerberg, and T.D. Dontje, Effects of pairwise versus many-body forces on high-stress plastic deformation, Phys. Rev. A 43, 2655 (1991).

    Article  CAS  Google Scholar 

  21. N.J. Wagner, B.L. Holian, and A.F. Voter, Molecular-dynamics simulations of two-dimensional materials at high strain rates, Phys. Rev. A 45, 8457 (1992).

    Article  CAS  Google Scholar 

  22. R. Phillips, Crystals, Defects and Microstructures—Modeling Across Scales (Cambridge University Press, Cambridge, 2001), p. 206.

  23. Y-L. Shen, Strength and interface-constrained plasticity in thin metal films, J. Mater. Res. 18, 2281 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, YL. On the Atomistic Simulation of Plastic Deformation and Fracture in Crystals. Journal of Materials Research 19, 973–976 (2004). https://doi.org/10.1557/JMR.2004.0126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0126

Navigation