Skip to main content
Log in

Thermal shock of porous silicon nitride with preferentially aligned grains

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We studied the thermal shock resistance of a silicon nitride containing elongated and preferentially aligned grains with different volume fractions of pores, ranging from 0 to 0.27. It was found that an increase in the volume fraction of pores decreased both the strength and the temperature through which the sample must be quenched to cause cracking. However, at intermediate values of the porosity (0.07), the temperature change required to cause cracking was much smaller than predicted. Observations of the resulting damage suggested that this had occurred because of the formation of cracks just underneath and parallel to the cooled surface of the sample that were able to change the direction of their growth. The extent of cracking was found to be only very weakly dependent on the volume fraction of pores, consistent with calculations of the variation of crack driving force within the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Raj, J. Am. Ceram. Soc. 76, 2147 (1993).

    Article  CAS  Google Scholar 

  2. H. Liu, B.R. Lawn, and S.M. Hsu, J. Am. Ceram. Soc. 79, 1009 (1996).

    Article  CAS  Google Scholar 

  3. R.W. Trice and J.W. Halloran, J. Am. Ceram. Soc. 82, 2633 (1999).

    Article  CAS  Google Scholar 

  4. A. Reichl and R.W. Steinbrech, J. Am. Ceram. Soc. 71, C299 (1988).

    Article  CAS  Google Scholar 

  5. R.W. Steinbrech and O. Schmenkel, J. Am. Ceram. Soc. 71, C271 (1988).

    Article  CAS  Google Scholar 

  6. R. Knehans and R. Steinbrech, J. Mater. Sci. Lett. 1, 327.

  7. Y. Inagaki, T. Ohji, S. Kanzaki, and Y. Shigegaki, J. Am. Ceram. Soc. 83, 1807 (2000).

    Article  CAS  Google Scholar 

  8. H. Imamura, K. Hirao, M.E. Brito, M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc. 83, 495 (2000).

    Article  CAS  Google Scholar 

  9. J-F. Yang, in Fifth International Symposium on Synergy Ceramics (Fine Ceramics Research Association, Tokyo, Japan, 2001).

  10. J-F. Yang, T. Ohji, S. Kanzaki, A. Diaz, and S. Hampshire, J. Am. Ceram. Soc. 85, 1512 (2002).

    Article  CAS  Google Scholar 

  11. Y. Shigegaki, M.E. Brito, K. Hirao, M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc. 80, 495 (1997).

    Article  CAS  Google Scholar 

  12. J-F. Yang, G-J. Zhang, and T. Ohju, J. Am. Ceram. Soc. 84, 1639 (2001).

    Article  CAS  Google Scholar 

  13. R.W. Davidge and G. Tappin, Trans. Brit. Ceram. Soc. 66, 405 (1967).

    CAS  Google Scholar 

  14. H.A. Bahr, G. Fischer, and H.J. Weiss, J. Mater. Sci. 21, 2716 (1986).

    Article  CAS  Google Scholar 

  15. L.J. Vandeperre, A. Kristofferson, E. Carlstrom, and W.J. Clegg, J. Am. Ceram. Soc. 84, 104 (2001).

    Article  CAS  Google Scholar 

  16. W.D. Kingery, Introduction to Ceramics (John Wiley and Sons, New York, 1960), p. 781.

  17. A.G. Evans and E.A. Charles, J. Am. Ceram. Soc. 60, 22 (1977).

    Article  CAS  Google Scholar 

  18. T. Fett and D. Munz, J. Am. Ceram. Soc. 75, 3133 (1992).

    Article  CAS  Google Scholar 

  19. R.W. Rice, Porosity of Ceramics, Materials Engineering. (Marcel Dekker, New York, 1998), p. 539.

  20. F. Lankmans, in Departement Metaalkunde en Toegepaste Materiaalkunde (Katholieke Universiteit Leuven, Leuven, Belgium, 1997), p. 80.

  21. J. Wang, in Department of Materials Science and Metallurgy (University of Cambridge, Cambridge, UK, 2001), p. 139.

  22. E.D. Case and J.R. Smyth, J. Mater. Sci. 16, 3215 (1981).

    Article  CAS  Google Scholar 

  23. J. Wang, L.J. Vandeperre, R.J. Stearn, and W.J. Clegg, in 7th European Ceramic Society Conference, edited by C. Kermel, V. Lardot, D. Libert, and I. Urbain (Trans Tech Publications, Brugge, Belgium, 2001).

  24. I.M. Peterson and T-Y. Tien, J. Am. Ceram. Soc., 1995. 78, 2345.

    Article  CAS  Google Scholar 

  25. D.P.H. Hasselman, J. Am. Ceram. Soc. 52, 600 (1969).

    Article  CAS  Google Scholar 

  26. J. Li, X. Kong, Z. Xie, and Y. Huang, J. Am. Ceram. Soc. 82, 1576 (1999).

    Article  CAS  Google Scholar 

  27. Y.H. Zhang, L. Edwards, and W.J. Plumbridge, J. Am. Ceram. Soc. 81, 1861 (1998).

    Article  CAS  Google Scholar 

  28. T. Rouxel, J-L. Besson, C. Gault, P. Goursat, M. Leigh, and S. Hampshire, J. Mater. Sci. Lett. 8, 1158 (1989).

    Article  CAS  Google Scholar 

  29. K. Kendall, Proc. R. Soc. Lond. A 344, 287 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandeperre, L.J., Inagaki, Y. & Clegg, W.J. Thermal shock of porous silicon nitride with preferentially aligned grains. Journal of Materials Research 18, 2724–2729 (2003). https://doi.org/10.1557/JMR.2003.0379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0379

Navigation