Skip to main content
Log in

Tensile strength of zinc oxide films measured by a microbridge method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Double-layered ZnO/silicon nitride microbridges were fabricated for microbridge tests. In a test, a load was applied to the center of the microbridge specimen by using a microwedge tip, where the displacement was recorded as a function of load until the specimen broke. The silicon nitride layer in the structure served to enhance the robustness of the specimen. By fitting the data to a theory, the elastic modulus, residual stress, and tensile strength of the ZnO film were found to be 137 ± 18 GPa, −0.041 ± 0.02 GPa, and 0.412 ± 0.05 GPa, respectively. The analysis required the elastic modulus, internal stress, and tensile strength of the silicon nitride layer. They were measured separately by microbridge tests on single-layered silicon nitride microbridges. The measured tensile strength of the ZnO films represents the maximum tolerable tensile stress that the films can sustain when they are used as the functional component in devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C-H. Dan and E.S. Kim, in Proceedings of the Fourteenth IEEE International Conference on Micro Electro Mechanical Systems (2001), p. 110.

  2. Y-J. Yong, Y-S.Kang, P.S. Lee, and J-Y. Lee, J. Vac. Sci. Technol. B 20, 42 (2002).

    Article  CAS  Google Scholar 

  3. S.H. Park, B.C. Seo, G. Yoon, and H.D. Park, J. Vac. Sci. Technol. A 18, 2432 (2000).

    Article  CAS  Google Scholar 

  4. Committee on Advanced Materials and Fabrication Methods for Microelectromechanical Systems, Microelectromechanical Systems: Advanced Materials and Fabrication Methods (National Academy Press, Washington D.C., 1997), p. 2.

  5. X. Gong and Z. Suo, J. Mech. Phys. Solids 44, 751 (1996).

    Article  CAS  Google Scholar 

  6. S.L. dos Santos e Lucato, H-A. Bahr, V-B. Pham, D.C. Lupascu, H. Balke, J. Rödel, and U. Bahr, J. Mech. Phys. Solids 44, 751 (2002).

    Google Scholar 

  7. G.F. Cardinale and R.W. Tustison, Thin Solid Films 207, 126 (1992).

    Article  CAS  Google Scholar 

  8. J.J. Vlassak and W.D. Nix, J. Mater. Res. 7, 3242 (1992).

    Article  CAS  Google Scholar 

  9. Y-J. Su, C-F. Qian, M-H. Zhao, and T-Y. Zhang, Acta Mater. 48, 4901 (2000).

    Article  CAS  Google Scholar 

  10. T-Y. Zhang, Y-J. Su, C-F. Qian, M-H. Zhao, and L-Q. Chen, Acta Mater. 48, 2843 (2000).

    Article  CAS  Google Scholar 

  11. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  12. D.M. Teter, MRS Bull. 23, 22 (1998).

    Article  CAS  Google Scholar 

  13. M.P. Tsang, C.W. Ong, N. Chong, C.L. Choy, P.K. Lim, and W.W. Hung, J. Vac. Sci. Technol. A 19, 2542 (2001).

    Article  CAS  Google Scholar 

  14. A.C. Adam, in VLSI Technology, edited by S.M. Sze (McGraw-Hill, Singapore, 1985), p. 120.

  15. K.G. Budinski and M.K. Budinski, Engineering Materials: Properties and Selection, 6th ed. (Prentice Hall, Englewood Cliffs, NJ, 1999), p. 694.

  16. J.L. Yang and O. Paul, Sens. Actuators A 97–98, 520 (2002).

    Article  Google Scholar 

  17. S. Ogata, N.Hirosaki, C. Kocer, and H. Kitagawa, Phys. Rev. B 64, article 172102 (2001).

  18. S.A. Jade and J.G. Smith, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 768 (1999).

    Article  CAS  Google Scholar 

  19. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish, and M.V. Swain, Appl. Phys. Lett. 6, 956 (2002).

    Article  Google Scholar 

  20. V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).

    Article  CAS  Google Scholar 

  21. A. Cimpoiasu, N.M. van der Pers, Th.H. de Keyser, A. Venema, and M.J. Vellekoop, Smart Mater. Struct. 5, 744 (1996).

    Article  Google Scholar 

  22. J. Hinze and K. Ellmer, J. Appl. Phys. 88, 2443 (2002).

    Article  Google Scholar 

  23. C. Lu, R. Danzer, and F.D. Fischer, Phys. Rev. E 65, article 067102 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, C.W., Zong, D.G., Aravind, M. et al. Tensile strength of zinc oxide films measured by a microbridge method. Journal of Materials Research 18, 2464–2472 (2003). https://doi.org/10.1557/JMR.2003.0343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0343

Navigation