Skip to main content
Log in

Structural, magnetic, and transport properties of pulsed-laser deposition La0.65Ca0.35MnO3 films grown under different substrate arrangements in the laser plume

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, transport, and magnetic properties of La0.65Ca0.35MnO3 films grown on MgO substrates by pulsed-laser deposition under different substrate arrangements in the laser plume were studied. In addition to the standard substrate arrangement in the main stream of particles, substrate arrangements in the periphery area of the laser plume and in an area shielded from the plume were used. In the latter case, the deposition occurs from the flux that is reflected from a side screen. It was found that the substrate arrangement influences considerably the surface topography, structure, chemical composition, magnetic, transport, and magnetoresistance properties of the films. It was found that the substrate arrangements in the periphery area of the laser plume and in the shielded area of the plume eliminate deposition of large particulates. The latter arrangement is the most effective in elimination of particulate deposition. In this case, the film has the smoothest surface with root mean square roughness of about 2 nm. The data obtained revealed interesting correlations between the structural and transport properties as well. In particular, films deposited in the periphery and shielded areas of the laser plume have increased nonstoichiometry (La deficiency), higher resistivity, and broader magnetic transitions. The polycrystalline nature of the films studied is taken into account in the discussion of their transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Singh and J. Narayan, Phys. Rev. B 41, 8843 (1990).

    Article  CAS  Google Scholar 

  2. J. Cheung and J. Horwitz, Mater. Res. Bull. XVII(2), 30 (1992).

    Article  Google Scholar 

  3. R.F. Haglund and N. Itoh, in Laser Ablation, edited by J.C. Miller (Springer, Berlin, 1994), pp. 11–52.

  4. T.V. Venkatesan, in Laser Ablation, edited by J.C. Miller (Springer, Berlin, 1994), pp. 85–106.

  5. J.M.D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  CAS  Google Scholar 

  6. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  CAS  Google Scholar 

  7. H. Huhtinen, J. Raittila, P. Paturi, J. Salminen, and V.S. Zakhvalinskii, J. Phys.: Condens. Matter. 14, 7165 (2002).

    CAS  Google Scholar 

  8. B. Holzapfel, B. Roas, L. Shultz, P. Bauer, and G. Saemann-Ischenko, Appl. Phys. Lett. 61, 3178 (1992).

    Article  CAS  Google Scholar 

  9. A.A. Ivanov, P.V. Bratukhin, S.G. Galkin, A.V. Kuznetsov, A.P. Menushenkov, and S.V. Shavkin, Sverkhprovodimost’: Fizika, Khimiya, Tekhnika 5, 724 (1992).

    CAS  Google Scholar 

  10. A.I. Usoskin and I.N. Chukanova, Sov. J. Low Temp. Phys 18, 233 (1992, English).

  11. E. Gommert, H. Cerva, J. Wecker, and K. Samwer, J. Appl. Phys. 85, 5417 (1999).

    Article  CAS  Google Scholar 

  12. T.Y. Koo, S.H. Park, K-B. Lee, and Y.H. Jeong, Appl. Phys. Lett. 71, 977 (1997).

    Article  CAS  Google Scholar 

  13. M. Arita, A. Sasaki, K. Hamada, A. Okada, J. Hayakawa, H. Asano M. Matsui, and H. Takahashi, J. Magn. Magn. Mater. 211, 84 (2000).

    Article  CAS  Google Scholar 

  14. R. Shreekala, M. Rajeswari, R.C. Srivastava, K. Ghosh, A. Goyal, V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, M. Downes, R.P. Sharma, S.B. Ogale, R.L. Greene, R. Ramesh, T. Venkatesan, R.A. Rao, and C.B. Eom, Appl. Phys. Lett. 74, 1886 (1999).

    Article  CAS  Google Scholar 

  15. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  Google Scholar 

  16. M.F. Hundley, M. Hawley, R.H. Heffner, Q.X. Jia, J.J. Neumeier, J. Tesmer, J.D. Thompson, and X.D. Wu, Appl. Phys. Lett. 67, 860 (1995).

    Article  CAS  Google Scholar 

  17. R. Mahendiran, R. Mahesh, A.K. Raychaudhuri, and C.N.R. Rao, Solid State Commun. 99, 149 (1996).

    Article  CAS  Google Scholar 

  18. A.K.M. Akhter Hossain, L.F. Cohen, T. Kodenkandeth, J. MacManus-Driscoll, and N. McN. Alford, J. Magn. Magn. Mater. 195, 31 (1999).

    Article  Google Scholar 

  19. A. Gupta, in Colossal Magnetoresistance, Charge Ordering and Ralated Properties of Manganese Oxides, edited by C.N.R. Rao and B. Raveau (World Scientific, Singapore, 1998), pp. 189–205.

  20. H.Y. Hwang, S-W. Cheong, N.P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).

    Article  CAS  Google Scholar 

  21. J.E. Evetts, M.G. Blamire, N.D. Mathur, S.P. Isaac, B-S. Teo, L.F. Cohen, and J.L. MacManus-Driscoll, Philos. Trans. R. Soc. Lond. A 356, 1593 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Belevtsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belevtsev, B.I., Naugle, D.G., Rathnayaka, K.D.D. et al. Structural, magnetic, and transport properties of pulsed-laser deposition La0.65Ca0.35MnO3 films grown under different substrate arrangements in the laser plume. Journal of Materials Research 18, 2406–2414 (2003). https://doi.org/10.1557/JMR.2003.0336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0336

Navigation