Skip to main content
Log in

Interfacial and twin boundary structures of nanostructured Cu–Ag filamentary composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A high-resolution transmission electron microscope was used to study the interfacial and twin boundary structure of nanostructured Cu–Ag filamentary composites. Copper matrix and silver filaments have the orientation relationship {111}Cu∥{111}Ag and 〈111〉Cu∥〈111〉Ag. In some regions, twin bands propagated through the silver filaments with some boundary steps at the matrix/filament interface, and the silver filament appeared to be kinked in the twin band in the same direction as the twinning shear. This suggests that twins propagated after the formation of silver filament, and twin bands were deformation twins. At the matrix/filament interface, misfit interface dislocations were introduced periodically to relieve the misfit strain. The distance between interfacial misfit dislocations along the matrix/filament interface in the longitudinal section was measured to be 1.88 nm, which is in good agreement with that (1.81 nm) calculated based on lattice misfit. In Cu–Ag nanocomposites, the spacing between Moire fringes was found to be quite close to that between interfacial misfit dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Wood, Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada (1994).

  2. J. Freudenberger, Adv. Eng. Mater. 4, 677 (2002).

    Article  Google Scholar 

  3. D. Dew-Hughes, Mater. Sci. Eng. 168A, 35 (1993).

    Article  Google Scholar 

  4. J.D. Embury, M.A. Hill, W.A. Spitzig, and Y. Sakai, MRS Bull. 18(8), 57 (1993).

    Article  CAS  Google Scholar 

  5. S.I. Hong and M.A. Hill, Acta Mater. 46, 4111 (1998).

    Article  CAS  Google Scholar 

  6. Y. Sakai and H-J. Schneider-Muntau, Acta Mater. 45, 1017 (1997).

    Article  CAS  Google Scholar 

  7. S.I. Hong and M.A. Hill (unpublished, 2003).

  8. Y. Sakai, K. Inoue, T. Asano, H. Wada, and H. Maeda, Appl. Phys. Lett. 59, 2965 (1991).

    Article  CAS  Google Scholar 

  9. L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, J.P. Peyrade, and S. Askenazy, Philos. Mag. 82, 925 (2002).

    Article  CAS  Google Scholar 

  10. K. Han, A.A. Vasquez, Y. Xin, and P.N. Kalu, Acta Mater. 51, 767 (2003).

    Article  CAS  Google Scholar 

  11. J.D. Verhoeven, L.S. Chumbley, F.C. Laabs, and W.A. Spitzig, Acta Metall. Mater. 39, 2825 (1991).

    Article  CAS  Google Scholar 

  12. P.D. Funkenbusch and T.H. Courtney, Acta Metall. 33, 913 (1985).

    Article  CAS  Google Scholar 

  13. C.L. Trybus and W.A. Spitzig, Acta Metall. 37, 1971 (1989).

    Article  CAS  Google Scholar 

  14. T.H. Courtney, in Metal Matrix Composites: Processing and Interfaces, edited by R.K. Everett and R.J. Arsenault (Academic Press, San Diego, CA, 1991), p. 101.

  15. C. Biselli and D.G. Morris, Acta Metall. Mater. 44, 493 (1996).

    Article  CAS  Google Scholar 

  16. S.I. Hong, J Mater. Res. 15, 1889 (2000).

    Article  CAS  Google Scholar 

  17. W.A. Spitzig, C.L. Trybus, and J.D. Verhoeven, in Metal Matrix Composites: Mechanisms and Properties, edited by R.K. Everett and R.J. Arsenault (Academic Press, San Diego, CA 1991), p. 151.

  18. C. Biselli and D.G. Morris, Acta Metall. Mater. 42, 163 (1994).

    Article  CAS  Google Scholar 

  19. L. Thilly, F. Lecouturier, and J. von Stebut, Acta Mater. 50, 5049 (2002).

    Article  CAS  Google Scholar 

  20. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, and K. Hono, Acta Mater. 49, 389 (2001).

    Article  CAS  Google Scholar 

  21. E. Snoeck, F. Lecouturier, L. Thilly, M.J. Casanove, H. Rakoto, G. Coffe, S. Askenazy, J.P. Peyrade, C. Roucau, V. Pantsyrny, A. Shikov, and A. Nikulin, Scripta Mater. 38, 1643 (1998).

    Article  CAS  Google Scholar 

  22. Y. Leprince-Wang, K. Han, Y. Huang, and K. Yu-Zhang, Mater. Sci. Eng. A 351, 214 (2003).

    Article  CAS  Google Scholar 

  23. S.I. Hong, Adv. Eng. Mater. 3, 475 (2001).

    Article  CAS  Google Scholar 

  24. S.I. Hong, M.A. Hill, Y. Sakai, J.T. Wood, and J.D. Embury, Acta Metall. Mater. 43, 3313 (1995).

    Article  CAS  Google Scholar 

  25. A. Benghalem and D.G. Morris, Acta Metall. Mater. 45, 397 (1997).

    Article  CAS  Google Scholar 

  26. G. Frommeyer and G. Wassermann, Acta Metall. 23, 1353 (1975).

    Article  CAS  Google Scholar 

  27. S. Walder and P.E. Ryder, J. Appl. Phys. 73, 6100 (1993).

    Article  Google Scholar 

  28. V. Phillips, Acta Metall. 14, 271 (1966).

    Article  CAS  Google Scholar 

  29. J.W. Edington, in Electron Diffraction in the Electron Microscope (Phillips Technical Library, Edindhoven, The Netherlands, 1975), p. 62.

    Book  Google Scholar 

  30. P. Hirsch, A. Howe, R.B. Nicholson, D.W. Pashley, and M.J. Whelan, Electron Microscopy of Thin Crystals (Robert E. Krieger Publishing Company, Hungtington, NY, 1977), p. 343.

    Google Scholar 

  31. N. Wang, Z. Wang, K.T. Aust, and U. Erb, Acta Metall. Mater. 43, 519 (1995).

    Article  CAS  Google Scholar 

  32. A. Inoue, Y. Horio, Y.H. Kim, and T. Matsumoto, Mater. Trans. JIM 33, 669 (1992).

    Article  CAS  Google Scholar 

  33. H.S. Kim and S.I. Hong, Acta Mater. 47, 2059 (1999).

    Article  CAS  Google Scholar 

  34. G. Rao, J.M. Howe, and P. Wynblatt, Scripta Metal. Mater. 30, 731 (1994).

    Article  CAS  Google Scholar 

  35. K. Han, J.D. Embury, J.J. Petrovic, and G.C. Weatherly, Acta Mater. 46, 4691 (1998).

    Article  CAS  Google Scholar 

  36. G.F. Taylor, Phys. Rev. 23, 655 (1924).

    Article  Google Scholar 

  37. J.A. Venables, in The Plastic Deformation of Metals, edited by R.W.K. Honeycombe (Edward Arnold, New York, 1071), p. 212.

  38. M. Hartherly and S. Malin, Metals Technol. August, 308 (1979).

    Article  Google Scholar 

  39. D. Turley, J. Inst. Met. 97, 237 (1969).

    CAS  Google Scholar 

  40. P.C.J. Gallagher, Metall. Trans. 1, 2429 (1970).

    CAS  Google Scholar 

  41. S.I. Hong and C. Laird, Acta Metall. Mater. 38, 1581 (1990).

    Article  CAS  Google Scholar 

  42. J. Weertman, J. Appl. Phys. 26, 1213 (1955).

    Article  CAS  Google Scholar 

  43. T.H. Courtney, Mechanical Behavior of Materials, International ed. (McGraw-Hill, New York, 1990), p. 170.

  44. W. Grunberger, M. Heilmaier, and L. Schiltz, Z. Metallkd. 93, 58 (2002).

    Article  CAS  Google Scholar 

  45. S.I. Hong and M.A. Hill, Mater. Sci. Eng. A 281, 189 (2000).

    Article  Google Scholar 

  46. S.I. Hong, Scripta Mater. 39, 1685 (1998).

    Article  CAS  Google Scholar 

  47. H. Suzuki and C.S. Barret, in Structure of Metals, 3rd ed., edited by C. Barret and T.B. Massalski (Pergamon, Oxford, U.K., 1980), p. 408.

  48. A.T. English and G. Chin, Acta Metall. 13, 1013 (1965).

    Article  CAS  Google Scholar 

  49. R.W.K. Honeycombe, The Plastic Deformation of Metals (Edward Arnold, New York, 1971), p. 325.

    Google Scholar 

  50. C. Barret and T.B. Massalski, Structure of Metals, 3rd ed. (Pergamon, Oxford, U.K., 1980), p. 545.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.H., Hong, S.I. Interfacial and twin boundary structures of nanostructured Cu–Ag filamentary composites. Journal of Materials Research 18, 2194–2202 (2003). https://doi.org/10.1557/JMR.2003.0306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0306

Navigation