Skip to main content
Log in

Microstructural evolution of low-dose separation by implanted oxygen materials implanted at 65 and 100 keV

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin separation by implanted oxygen substrates are attractive candidates for low-power, low-voltage electronic devices and can be obtained by low-dose, low-energy oxygen–ion implantation. We report in this study a variation of the process parameters that have never been investigated before, particularly for implantation with a high current density implanter. Characterization of the sample sets by transmission electron microscopy, secondary ion mass spectroscopy (SIMS), and Rutherford backscattering spectrometry (RBS) shows an optimum dose of 3.0 to 3.5 × 1017 O+/cm2 at 100 keV for forming a continuous buried oxide (BOX) layer compared to 2.5 × 1017 O+/cm2 at 65 keV. At this optimum condition for 100 keV, the thickness of Si top layers and BOX layers is in the range of 175–185 nm and 70–80 nm, respectively. Analysis of the breakdown voltage of small area capacitors shows a breakdown field in the range of 6.0–7.0 MV/cm, which is adequate for low-power, low-voltage devices. SIMS analysis shows that the maximum oxygen concentration of as-implanted samples is located at depths of 160 and 240 nm for the implantation energy of 65 and 100 keV, respectively. A significant redistribution of oxygen occurs at temperatures above 1300 °C during the ramping process. RBS analysis showed that a high-quality crystalline Si layer was produced after annealing at 1350 °C for 4 h. The defect density determined by the chemical etching method was found to be very low (<300 defects per cm2) for all samples with a dose range of 3.0 × 1017 O+/cm2 to 6.0 × 1017 O+/cm2 implanted at 100 keV. However, a 65 keV sample with a dose of 4.5 × 1017 O+/cm2 contains about 109 defects per cm2. The larger defect density in the 65-keV sample may be due to the shift of oxygen depth distribution toward the surface, resulting in easier defect extension during the annealing process. The oxide precipitates in the Si overlayer play a key role in defect reduction by blocking the extension of dislocations to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Plossl and G. Kurauter, Solid-State Electronics, 44, 775 (2000).

    Article  CAS  Google Scholar 

  2. S. Cristoloveanu and S.S. Li, Electrical Characterization of Silicon-On-Insulator Materials and Devices (Kluwer Academic Publishers, Boston, MA, 1995).

    Book  Google Scholar 

  3. L.P. Allen, W. Skinner, and A. Cate, in Proceedings of the 2001 IEEE International SOI Conference (Piscataway, NJ, 2001), pp. 5–7.

    Google Scholar 

  4. D. Hill, P. Fraundorf, and G. Fraundorf, J. Appl. Phys. 63, 4933 (1988).

    Article  CAS  Google Scholar 

  5. J. Margail, J. Stoemenos, C. Jaussaud, and M. Bruel, Appl. Phys. Lett. 54, 526 (1989).

    Article  CAS  Google Scholar 

  6. D. Venables, K.S. Jones, and F. Namavar, Appl. Phys. Lett. 60, 3147 (1992)

    Article  CAS  Google Scholar 

  7. F. Namavar, E. Cortesi, B. Buchanan, J.M. Manke, and N.M. Kalkhoran, in Phase Formation and Modification by Beam-Solid Interactions, edited by G.S. Was, L.E. Rehn, and D.M. Follstaedt (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 109.

  8. Y. Li, J.A. Kilner, R.J. Chater, T.J. Tate, P.L.F. Hemment, and A. Nejim, in Phase Formation and Modification by Beam-Solid Interactions, edited by G.S. Was, L.E. Rehn, and D.M. Follstaedt (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 115.

  9. Y. Li, J.A. Kilner, P.L.F. Hemment, A.K. Robinson, J.P. Zhang, K.J. Reeson, C.D. Marsh, and G.R. Booker, Nucl. Instrum. Methods Phys. Res. B 64, 750 (1992).

    Article  Google Scholar 

  10. A.K. Robin, Y. Li, C.D. Marsh, R.J. Chater, P.L.F. Hemment, J.A. Kilner, and G.R. Booker, Mater. Sci. Eng. B 12, 41 (1992).

    Article  Google Scholar 

  11. A. Nejim, Y. Li, C.D. Marsh, P.L.F. Hemment, R.J. Charter, J.A. Kilner, and G.R. Booker, Nucl. Instrum. Methods Phys. Res. B 80/81, 822 (1993).

    Article  Google Scholar 

  12. M.J. Anc, J.G. Blake, and T. Nakai, in Silicon-On-Insulator Technology and Devices IX, edited by P.L. Hemment (The Electrochemical Society Proceedings Series PV99-3, Pennington, NJ, 1999), p. 51.

  13. J. Jiao, B. Johnson, S. Seraphin, M.J. Anc, R.P. Dolan, and B.F. Cordts, Mater. Sci. Eng. B 72, 150 (2000).

    Article  Google Scholar 

  14. B. Johnson, Y. Tan, P. Anderson, S. Seraphin, and M.J. Anc, J. Electrochem. Soc. 148, G63 (2001).

  15. J.F. Zieger, Handbook of Ion Implantation Technology (Elsevier Science Publisher, Amsterdam, The Netherlands, 1992).

    Google Scholar 

  16. M.K. El-Ghor, S.J. Pennycook, F. Namavar, and N.H. Karam, Appl. Phys. Lett. 57, 156 (1990).

    Article  CAS  Google Scholar 

  17. M. Ishimura, T. Tsunemori, S. Harada, M. Arita, and T. Motooka, Nucl. Instrum. Methods B 148, 311 (1999).

    Article  Google Scholar 

  18. Y. Ishikawa and N. Shibata, Nucl. Instrum. Methods Phys. Res. B 91, 520 (1994).

    Article  CAS  Google Scholar 

  19. R. Weber and W. Skorupa, Nucl. Instrum. Methods Phys. Res. B 149, 99 (1999).

    Article  CAS  Google Scholar 

  20. S. Reiss and K.H. Heinig, Nucl. Instrum. Methods Phys. Res. B 84, 229 (1994).

    Article  CAS  Google Scholar 

  21. L.F. Giles, A. Nejim, and P.L.F. Hemment, Mater. Chem. Phys. 35, 129 (1993).

    Article  CAS  Google Scholar 

  22. S. Nakashima and K. Izumi, J. Mater. Res. 8, 523 (1993).

    Article  CAS  Google Scholar 

  23. S. Bagchi, D.J. Lee, S.J. Krause, and P. Roitman, Proceedings of the 1995 IEEE SOI Conference (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), p. 118.

    Book  Google Scholar 

  24. C.F. Cerofolini, S. Bertoni, L. Meda, and C. Spaggiari, Nucl. Instrum. Methods Phys. Res. B 84, 234 (1994).

    Article  CAS  Google Scholar 

  25. S.J. Krause, C.O. Jung, T.S. Ravi, S.R. Wilson, and D.E. Burke, in Silicon-On-Insulator and Buried Metabolism in Semiconductors, edited by J.C. Sturm, C.K. Chen, L. Pfeiffer, and P.L.F. Hemment (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 93.

  26. A. Nejim, C.D. Marsh, L.F. Giles, P.L.F. Hemment, Y. Li, R.J. Chater, J.A. Kilner, and G.R. Booker, Nucl. Instrum. Methods Phys. Res. B 84, 248 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sik Jeoung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeoung, J.S., Anderson, P. & Seraphin, S. Microstructural evolution of low-dose separation by implanted oxygen materials implanted at 65 and 100 keV. Journal of Materials Research 18, 2177–2187 (2003). https://doi.org/10.1557/JMR.2003.0304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0304

Navigation