Skip to main content
Log in

Influence of structure and chemistry on piezoelectric properties of lead zirconate titanate in a microelectromechanical systems power generation application

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead zirconate titanate (PZT) films between 1 and 3 μm thick were grown using solution deposition techniques to study the effects of crystal structure and orientation on the direct piezoelectric output of these films on platinized Si membranes. By varying the chemistry of the film from Zr-rich to Ti-rich, the {100}/(111) relative intensity increased for films grown on randomly oriented Pt films. The 40:60 PZT had a tetragonal crystal structure and produced greater electrical output at a given strain than the rhombohedral film (Zr:Ti concentrations less than 50:50), while having a similar e31 constant, between 4.8 and 6.3 C/m2. Orientation and voltage output at a given strain were not strongly influenced by thickness in the ranges investigated. Defects in internal PZT/PZT crystallization interfaces were identified and include porosity on the order of tens of nm, with a corresponding depletion in Pb and accumulation of O at these interfaces. The {100} texture of rhombohedral films deposited upon (111) textured Pt films is significantly greater than the {100} texture of tetragonal films, which show both a {100} and {111} orientation on the same Pt film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Kholkin, K.G. Brooks, D.B. Taylor, N. Setter, and A. Safari in Ferroelectric Thin Films VII, edited by R.E. Jones, R.W. Schwartz, S.R. Summerfelt, and I.K. Yoo (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 623.

  2. L.E. Cross, Jpn. J. Appl. Phys. 34, 2525 (1995).

    Article  CAS  Google Scholar 

  3. S. Wakabayahi, M. Sakata, H. Goto, M. Takeuchi, and T. Yada, Jpn. J. Appl. Phys. 35, 5012 (1996).

    Article  Google Scholar 

  4. R. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z-L. Xie, and K.J. Hemker, J. App. Phys. 89, 1336 (2001).

    Article  CAS  Google Scholar 

  5. J. Baborowski, N. Ledermann, and P. Muralt in Nano- and Microelectromechanical Systems (NEMS and MEMS) and Molecular Machines, edited by A.A. Ayon, T. Buchheit, D.H. LaVan, and M. Madou (Mater. Res. Soc. Symp. Proc. 741, Warrendale, PA, 2003).

  6. S. Whalen, M. Thompson, D. Bahr, C. Richards, and R. Richards, Sens. Actuators 104, 200 (2003).

    Article  Google Scholar 

  7. W.I. Lee and L.K. Lee, Mater. Res. Bull. 30, 1188 (1995).

    Article  Google Scholar 

  8. B. Ea-Kim, F. Varniere, M.C. Hugon, B. Agius, R. Bisaro, and J. Olivier in Ferroelectric Thin Films V, edited by S.B. Desu, R. Ramesh, B.A. Tuttle, R.E. Jones, and I.K. Yoo (Mater. Res. Soc. Symp. Proc. 433, Warrendale, PA, 1996), p. 163.

  9. G.R. Fox and S. Summerfelt in Magnetic and Electronic Films-Microstructure, Texture and Application to Data Storage, edited by P.W. DeHaven, D.P. Field, S.D. Harkness IV, J.A. Sutliff, J.A. Sepumar, L. Tang, T. Thomson, and M.D. Vaudin (Mater. Res. Soc. Symp. Proc. 721, Warrendale, PA, 2002), p. 145.

  10. D.V. Taylor and D. Damjanovic, Appl. Phys. Lett. 76, 1615 (2000).

    Article  CAS  Google Scholar 

  11. B.A. Tuttle, T.J. Headley, B.C. Bunker, R.W. Schwartz, T.J. Zender, C.L. Hernandez, D.C. Goodnow, R.J. Tissot, J. Michael, and A.H. Carim, J. Mater. Res. 7, 1876 (1992).

    Article  CAS  Google Scholar 

  12. N. Floquet, J. Hector, and P. Gaucher, J. Appl. Phys. 84, 3815 (1998).

    Article  CAS  Google Scholar 

  13. S. Chen and I. Chen, J. Am. Ceram. Soc. 81, 97 (1998).

    Article  CAS  Google Scholar 

  14. D.L. Polla and L.F. Francis, Annu. Rev. Mater. Sci. 28, 563 (1998).

    Article  CAS  Google Scholar 

  15. X. Fu, J. Li, Z. Song, and C. Lin, J. Crystal Growth 220, 86 (2000).

    Article  Google Scholar 

  16. A. Seifert, N. Ledermann, S. Hiboux, and P. Muralt in Ferroelectric Thin Films VIII, edited by R.W. Schwartz, S.R. Summerfeit, P.C. McIntyre, Y. Miyasaka, and D. Wouters (Mater. Res. Soc. Symp. Proc. 596, Warrendale, PA, 2000), p. 535.

  17. S. Hiboux, P. Muralt, and N. Setter in Ferroelectric Thin Films VIII, edited by R.W. Schwartz, S.R. Summerfeit, P.C. McIntyre, Y. Miyasaka, and D. Wouters (Mater. Res. Soc. Symp. Proc. 596, Warrendale, PA, 2000), p. 499.

  18. H.N. Al-Shareef, A.I. Kingon, X. Chen, and K.R. Bellur, J. Mater. Res. 9, 2968 (1994).

    Article  CAS  Google Scholar 

  19. Z. Song and C. Lin, Appl. Surf. Sci. 158, 21 (2000).

    Article  CAS  Google Scholar 

  20. B.W. Olson, L.M. Randall, C.D. Richards, R.F. Richards, and D.F. Bahr in Transport and Microstructural Phenomena in Oxide Electronics, edited by D.S. Ginley, M.E. Hawley, D.C. Paine, D.H. Blank, and S.K. Streiffer (Mater. Res. Soc. Symp. Proc. 666, Warrendale, PA, 2001), p. F6.11.

  21. H.N. Al-Shareef, D. Dimos, B.A. Tuttle, and M.V. Raymond, J. Mater. Res. 12, 347 (1997).

    Article  CAS  Google Scholar 

  22. L.M.R. Eakins, D.E. Eakins, C.D. Richards, M.G. Norton, R.F. Richards, and D.F. Bahr in Structure-Property Relationships of Oxide Surfaces and Interlaces II, edited by X. Pan, K.B. Alexander, C.B. Carter, R.W. Grimes, and T. Wood (Mater. Res. Soc. Symp. Proc. 751, Warrendale, PA, 2003), p. Z3.46.1.

  23. B.A. Tuttle, T.J. Headley, H.N. Al-Shareef, J.A. Voigt, M. Rodriguez, J. Michael, and W.L. Warren, J. Mater. Res. 11, 2309 (1996).

    Article  Google Scholar 

  24. T. Yamamoto, Jpn. J. Appl. Phys. 35, 5104 (1996).

    Article  CAS  Google Scholar 

  25. A.L. Kholkin, A.K. Tagantsev, K.G. Brooks, D.V. Taylor, and N. Setter, IEEE ISAF 1, 351 (1996).

    CAS  Google Scholar 

  26. R. Guo, L.E. Cross, S-E. Park, B. Noheda, D.E. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).

    Article  CAS  Google Scholar 

  27. O.I. Prokopalo, Sov. Phys. Solid State 21, 1768 (1979).

    Google Scholar 

  28. K. Matsuura, K. Takai, T. Tamura, H. Ashida, and S. Otani, IEICE Trans. Electron. E81-C, 528 (1998).

    Google Scholar 

  29. X. Du, J. Zhen, U. Belegundu, and K. Uchino, Appl. Phys. Lett. 72, 2421 (1998).

    Article  CAS  Google Scholar 

  30. M-A. Dubois and P. Muralt, Sens. Actuators 77, 106 (1999).

    Article  CAS  Google Scholar 

  31. Y. Masuda and A. Baba, Jpn. J. Appl. Phys. 35, 5002 (1996).

    Article  CAS  Google Scholar 

  32. M. Klee, R. Eusemann, R. Waser, and W. Brand, J. Appl. Phys. 72, 1566 (1992).

    Article  CAS  Google Scholar 

  33. A. Garg and T.C. Goel, Mater. Sci. Eng. B 60, 128 (1999).

    Article  Google Scholar 

  34. K.D. Budd, S.K. Dey, and D.A. Payne, Brit. Ceram. Proc. 36, 107 (1985).

    CAS  Google Scholar 

  35. A.L. Olson, L.M. Eakins, B.W. Olson, D.F. Bahr, C.D. Richards, and R.F. Richards in Materials for Energy Storage, Generation and Transport (Mater. Res. Soc. Symp. Proc. 730, Warrendale, PA, 2002), p. V5.19.

  36. J.D. Hall, N.E. Apperson, B.T. Crozier, C. Xu, R.F. Richards, D.F. Bahr, and C.D. Richards, Rev. Sci. Instr. 73, 2067 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eakins, L.M.R., Olson, B.W., Richards, C.D. et al. Influence of structure and chemistry on piezoelectric properties of lead zirconate titanate in a microelectromechanical systems power generation application. Journal of Materials Research 18, 2079–2086 (2003). https://doi.org/10.1557/JMR.2003.0292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0292

Navigation