Skip to main content
Log in

Determination of the stress-dependent stiffness of plasma-sprayed thermal barrier coatings using depth-sensitive indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The elastic response of atmospheric plasma-sprayed coatings was investigated using Vickers and spherical indenter geometries. In both cases a strong dependency of the stiffness on the applied load (indentation depth) was observed. The stiffness of the coatings decreased with increasing load for a Vickers indenter, whereas it increased for a spherical indenter. This contrary behavior was related to the relative crack density in the deformed volume and to the stress dependence of the stiffness due to crack closure. The effect of annealing on the stiffness was quantified for both tip geometries. The heat treatment yielded additional information on the relationship between the indentation data and the microstructural defects. From the results it was concluded that the stiffness measured using a sharp indenter and small load reflected the elastic behavior of single spraying splats. With the relatively large spherical indenter, the average global stiffness of the thermal barrier coating was measured even at small loads. From the data obtained using the spherical indenter, a compressive stress–strain curve was suggested. Furthermore, values of the apparent crack density and yield strength were determined from the indentation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Grünling and W. Mannsmann, J. Phys. (Paris) 4, 903 (1993).

    Google Scholar 

  2. J.T. DeMasi-Marcin and D.K. Gupta, Surf. Coat. Technol. 68/69, 1 (1994).

    Article  CAS  Google Scholar 

  3. D.B. Marshall and A.G. Evans, J. Appl. Phys. 56, 2632 (1984).

    Article  CAS  Google Scholar 

  4. A.G. Evans and J.W. Hutchinson, Int. J. Solids Struct. 20, 455 (1984).

    Article  Google Scholar 

  5. A.K. Sinha, H.J. Levinstein, and T.E. Smith, J. Appl. Phys. 49, 2423 (1978).

    Article  CAS  Google Scholar 

  6. S. Kuroda and T.W. Clyne, Thin Solid Films 200, 49 (1991).

    Article  CAS  Google Scholar 

  7. J.A. Thompson and T.W. Clyne, Acta Mater. 49, 1565 (2001).

    Article  CAS  Google Scholar 

  8. E.P. Busso, J. Lin, S. Sakurai, and N. Nakayama, Acta Mater. 49, 1515 (2001).

    Article  CAS  Google Scholar 

  9. D. Basu, C. Funke, and R.W. Steinbrech, J. Mater. Res. 14, 12 (1999).

    Article  Google Scholar 

  10. C.A. Johnson, J.A. Ruud, R. Bruce, and D. Wortman, Surf. Coat. Technol. 108–109, 80 (1998).

    Article  Google Scholar 

  11. J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, and G. de With, Mater. Sci. Eng. R 36, 47 (2002).

    Article  Google Scholar 

  12. J.I. Eldridge, D. Zhu, and R.A. Miller, J. Am. Cer. Soc. 84, 2737 (2001).

    Article  CAS  Google Scholar 

  13. E. Wessel and R.W. Steinbrech, Key. Eng. Mater. 223, 55 (2002).

    Article  CAS  Google Scholar 

  14. B. Siebert, C. Funke, R. Vaβen, and D. Stöver, J. Mater. Process. Technol. 92–93, 217 (1999).

    Article  Google Scholar 

  15. DIN 50359, Deutsches Institut für Normung e.V., Beuth Verlag, Berlin, Germany (1997).

  16. J. Malzbender, J. Euro. Ceram. Soc. 23, 1355 (2003).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. T-Y. Zhang and W-H. Xu, J. Mater. Res. 17, 1715 (2002).

    Article  CAS  Google Scholar 

  19. P. Grau. C. Ullner, and H-H. Behncke, Materialpriifung 39, 9 (1997).

    Google Scholar 

  20. M.S. Bobji and S.K. Biswas, Trib. Lett. 7, 51 (1999).

    Article  Google Scholar 

  21. H. Meinhard and P. Grau, Härterei-Technische Mitteilungen 56, 287 (2001).

    Google Scholar 

  22. P. Grau, C. Ullner, and H. Behncke, Materialpriifung 39, 362 (1997).

    CAS  Google Scholar 

  23. R.S. Lima, A. Kucuk, and C.C. Berndt, Surf. Coat. Technol. 135, 166 (2001).

    Article  CAS  Google Scholar 

  24. A.I. Gusev, Physics-Uspehki 41, 49 (1998).

    Article  Google Scholar 

  25. H.S. Kim and M.B. Bush, NanoStructured Mater. 11, 361 (1999).

    Article  CAS  Google Scholar 

  26. A.E. Giannakopoulos, Thin Solid Films 332, 172 (1998).

    Article  CAS  Google Scholar 

  27. T. Nakamura, G. Quina, and C.C. Berndt, J. Am. Cer. Soc. 83, 578 (2000).

    Article  CAS  Google Scholar 

  28. A. Anthoine, Int. J. Solids Structures 37, 1003 (2000).

    Article  Google Scholar 

  29. M. Kachanov, I. Tsukrov, and B. Shafiro, Appl. Mech. Rev. 47, 151 (1994).

    Article  Google Scholar 

  30. T. Nakamura, G. Qian, and C.C. Berndt, J. Am. Ceram. Soc. 83, 578 (2000).

    Article  CAS  Google Scholar 

  31. J.G. Swadener, B. Taljat, and G.M. Pharr, J. Mater. Res. 16, 2091 (2001).

    Article  CAS  Google Scholar 

  32. H.J. Kim and Y.G. Kweon, Thin Solid Films 342, 201 (1999).

    Article  CAS  Google Scholar 

  33. J. Malzbender and R.W. Steinbrech, J. Mater. Res. 18, 1374 (2003).

    Article  CAS  Google Scholar 

  34. J.S. Wallace and J. Ilavsky, J. Thermal Spray Technol. 7, 521 (1998).

    Article  CAS  Google Scholar 

  35. A.J. Allen, J. Ilavsky, G.G. Long, J.S. Wallace, C.C. Berndt, and H. Herman, Acta Mater. 49, 1661 (2001).

    Article  CAS  Google Scholar 

  36. R.W. Steinbech, Ceramic Eng. Sci. Proc. 23, 371 (2002).

    Google Scholar 

  37. G. Thurn, G.A. Schneider, H-A. Bahr, and F. Aldinger, Surf. Coat. Technol. 123, 147 (2000).

    Article  CAS  Google Scholar 

  38. J-H. Ahn, E-C. Jeon, Y. Choi, Y-H. Lee, and D. Kwon, Current Appl. Phys. 2, 525 (2002).

    Article  Google Scholar 

  39. F. Kroupa and J. Dubsky, Scripta Mater. 40, 1249 (1999).

    Article  CAS  Google Scholar 

  40. I. Sevostianov, M. Kachanov, and J. Ruud, J. Eng. Mater. Technol. 124, 246 (2002).

    Article  Google Scholar 

  41. T. Wakui, J. Malzbender, R.W. Steinbrech, and L. Singheiser, to be presented at the International Conference on Thermal Spraying, ITSC 2003, Orlando, Florida.

  42. J.I. Eldrige, G.N. Morscher, and S.R. Choi, Ceramic Eng. Sci. Proc. 23, 371 (2002).

    Article  Google Scholar 

  43. G.E. Exadaktylos, I. Vardoulakis, S.K. Kourkoulis, Int. Solids Structures 38, 4091 (2001).

    Article  Google Scholar 

  44. Y-T. Cheng and C-M. Cheng, Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  45. E. Lugscheider, K. Bobzin, S. Bärwulf, and A. Etzkorn, Surf. Coat. Technol. 138, 9 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malzbender, J., Steinbrech, R.W. Determination of the stress-dependent stiffness of plasma-sprayed thermal barrier coatings using depth-sensitive indentation. Journal of Materials Research 18, 1975–1984 (2003). https://doi.org/10.1557/JMR.2003.0274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0274

Navigation