Skip to main content
Log in

High-temperature MgO–C–Al refractories–metal reactions in high-aluminum-content alloy steels

Journal of Materials Research Aims and scope Submit manuscript

Abstract

MgO–C–Al refractories were used in this study to evaluate high-temperature refractory–metal reactions with molten Fe–Mn–Al alloys. Dynamic reaction tests at 1570 °C and static reaction tests at 1500 °C and 1600 °C, respectively, were used. MgAl2O4 and Al4C3 phases were observed in the refractory bulk, and a large amount of protective MgAl2O4 phase formed due to the decomposition of Al4C3 phases on the refractory–metal reaction interface of the MgO–C–Al brick to retard the high-temperature attack of Fe–Mn–Al alloy melts. The oxygen partial pressure was substantially reduced by the oxidation of graphite in the MgO–C–Al brick during high-temperature test. This resulted in the nitridation of aluminum in molten Fe–Mn–Al alloy. White aluminum nitride (AlN) with the shape of whisker-like powder was formed and adhered to the surface of the MgO–C–Al brick. Aluminum was depleted from the Fe–Mn–Al alloy by nitridation or the oxidation reaction by CO gas. The alloy would also be carburized due to the absorption of CO gas or the reaction between aluminum and CO gas, which was produced by the oxidation of graphite in the MgO–C–Al refractory after static reaction test. It is argued that the MgO–C–Al refractory is not suitable to be used in the melting of Fe–Mn–Al alloys with high aluminum contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Lewis, in Engineered Materials Handbook, edited by T.J. Reinhart (ASM International, Metals Park, OH, 1991), Vol. 4, pp. 895–918.

  2. W.E. Lee and R.E. Moore, J. Am. Ceram. Soc. 81, 1385 (1998).

    Article  CAS  Google Scholar 

  3. T. Morimoto and A. Harita, Taikabutsu 31, 440 (1997).

    Google Scholar 

  4. S. Uchida, K. Ichikawa, and K. Niihara, J. Am. Ceram. Soc. 81, 2910 (1998).

    Article  CAS  Google Scholar 

  5. R.E. Moore, Curr. Opin. Solid State Mater. Sci. 2, 571 (1997).

    Article  CAS  Google Scholar 

  6. C.F. Cooper, I.C. Alexander, and C.J. Hampson, Br. Ceram. Trans. J. 84, 57 (1985).

    CAS  Google Scholar 

  7. C. Baudin, C. Alvarez, and R.E. Moore, J. Am. Ceram. Soc. 82, 3529 (1999).

    Article  CAS  Google Scholar 

  8. C. Baudin, C. Alvarez, and R.E. Moore, J. Am. Ceram. Soc. 82, 3539 (1999).

    Article  CAS  Google Scholar 

  9. S. Zhang and W.E. Lee, J. Eur. Ceram. Soc. 21, 2393 (2001).

    Article  CAS  Google Scholar 

  10. W.S. Resende, R.M. Stoll, S.M. Justus, R.M. Andrade, E. Longo, J.B. Baldo, E.R. Leite, C.A. Paskocimas, L.E.B. Soledade, J.E. Gomes, and J.A. Varela, J. Eur. Ceram. Soc. 20, 1419 (2000).

    Article  CAS  Google Scholar 

  11. C.J. Wang, J.W. Lee, and T.H. Twu, Surf. Coat. Technol. 2003, 163, 37 (2003).

    Article  Google Scholar 

  12. J.G. Duh and C.J. Wang, J. Mater. Sci. 25, 268 (1990).

    Article  CAS  Google Scholar 

  13. J.W. Lee and J.G. Duh, J. Mater. Sci. 38, 713 (2003).

    Article  CAS  Google Scholar 

  14. S.M. Kim, W.K. Lu, P.S. Nicholson, and A.E. Hamielec, Am. Ceram. Soc. Bull. 53, 543 (1974).

    CAS  Google Scholar 

  15. A. Muan, in Electric Furnace Steelmaking, edited by C.R. Taylor (Iron and Steel Society, Warrendale, PA, 1985), p. 387.

  16. R. Angers, R. Tremblay, L. Desrosiers, and D. Dube, J. Can. Ceram. Soc. 66, 64 (1997).

    CAS  Google Scholar 

  17. S.C. Carniglia, Ceram. Bull. 52(2), 160 (1973).

    CAS  Google Scholar 

  18. B. Brezny, J. Am. Ceram. Soc. 59, 529 (1976).

    Article  CAS  Google Scholar 

  19. R.J. Leonard and R.H. Herron, J. Am. Ceram. Soc. 55, 1 (1972).

    Article  CAS  Google Scholar 

  20. C.J. Wang and Y.C. Chang, Mater. Chem. Phys. 77, 738 (2002).

    Article  Google Scholar 

  21. S.M. Bradshaw and J.L. Spicer, J. Am. Ceram. Soc. 82, 2293 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Duh, JG. High-temperature MgO–C–Al refractories–metal reactions in high-aluminum-content alloy steels. Journal of Materials Research 18, 1950–1959 (2003). https://doi.org/10.1557/JMR.2003.0271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0271

Navigation