Skip to main content
Log in

Formation of Mg–Mg2Cu nanostructured eutectic in Mg-based metal matrix composite

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the fabrication and characterization of a Mg-based metal matrix composite reinforced by MgO ceramic and Mg–Mg2Cu eutectic. The composite was fabricated by sintering and quenching of a Mg–20 wt.% CuO sample. We performed differential scanning calorimetry (DSC) on the sample and found that the reaction between Mg and CuO took place at about 420 °C. When the sample was sintered to 550 °C and cooled down, the two-phase Mg–Mg2 Cu eutectic formed. The final composite product contained MgO particles and Mg–Mg2Cu eutectic, which were embedded in the Mg matrix. Based on the results from DSC and scanning and transmission electron microscopies, a model is proposed to describe the competitive growth of Mg and the eutectic during solidification. We also found that the microstructure of the Mg–Mg2 Cu eutectic strongly depended on the rate of cooling. The lamellar thickness of the eutectic could be reduced to 120 nm by oil-quenching the sintered sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.L. Shen, J.J. Williams, G. Piotrowski, N. Chawla, and Y.L.Guo, Acta Mater. 49, 3219 (2001).

    Article  CAS  Google Scholar 

  2. Z.X. Guo and B. Derby, Prog. Mater. Sci. 39, 411 (1995).

    Article  CAS  Google Scholar 

  3. Y.F. Li, C.D. Qin, and D.H.L. Ng, J. Mater. Res. 14, 2997 (1999).

    Article  CAS  Google Scholar 

  4. C. Mayencourt and R. Schaller, Acta Mater. 46, 6103 (1998).

    Article  CAS  Google Scholar 

  5. A. Rudajevova, J. Kiehn, K.U. Kainer, B.L. Mordike, and P. Lukac, Scripta Mater. 40, 57 (1998).

    Article  Google Scholar 

  6. H. Hu, Scripta Mater. 39, 1015 (1998).

    Article  CAS  Google Scholar 

  7. F. Chmelik, J. Kiehn, P. Lukac, K.U. Kainer, and B.L. Mordike, Scripta Mater. 38, 81 (1997).

    Article  Google Scholar 

  8. F. Wu, J. Zhu, Y. Chen, and G. Zhang, Mater. Sci. Eng. A 277, 143 (2000).

    Article  Google Scholar 

  9. M.A. Matin, L. Lu, and M. Gupta, Scripta Mater. 45, 479 (2001).

    Article  CAS  Google Scholar 

  10. I. Gutman, L. Klinger, I. Gotman, and M. Shapiro, Scripta Mater. 45, 363 (2001).

    Article  CAS  Google Scholar 

  11. P. Greil, Adv. Mater. 14, 709 (2002).

    Article  CAS  Google Scholar 

  12. S.C. Tjong and Z.Y. Ma, Mater. Sci. Eng. A 29, 49 (2000).

    Article  Google Scholar 

  13. S. Celotto, Acta Mater. 48, 1775 (2000).

    Article  CAS  Google Scholar 

  14. N. Chikamatsu, T. Tagawa, and S. Goto, J. Mater. Sci. 30, 1367 (1995).

    Article  CAS  Google Scholar 

  15. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Comp. 315, 237 (2001).

    Article  CAS  Google Scholar 

  16. K. Yamamoto, S. Tanioka, Y. Tsushio, T. Shimizu, T. Morishita, S. Orimo, and H. Fujii, J. Alloys Comp. 243, 144 (1996).

    Article  CAS  Google Scholar 

  17. Y. Ji and J.A. Yeomans, J. Eur. Ceram. Soc. 22, 1927 (2002).

    Article  CAS  Google Scholar 

  18. L. Gao, H.Z. Wang, H. Kawaoka, T. Sekino, and K. Niihara, J. Eur. Ceram. Soc. 22, 785 (2002).

    Article  CAS  Google Scholar 

  19. J.M. Calderon-Moreno, M. Schehl, and M. Popa, Acta Mater. 50, 3973 (2002).

    Article  CAS  Google Scholar 

  20. J.M. Calderon-Moreno and M. Yoshimura, Scripta Mater. 44, 2153 (2001).

  21. V.N. Kuznetsov, E.G. Ponomareva, and N.I. Noskova, J Non-Cryst. Solids 205–207, 829 (1996).

    Article  Google Scholar 

  22. H. Baker, Alloy Phase Diagrams, Vol. 2 (American Society for Metals, Metals Park, OH, 1992), p. 172.

    Google Scholar 

  23. Y.J. Liang and Y.C. Che, Handbook of Thermodynamic Data of Inorganic Substances (Dong Bei University Press, Shenyang, People’s Republic of China, 1993).

    Google Scholar 

  24. W. Kurz and D.J. Fisher, Fundamentals of Solidification, 4th ed. (Trans Tech Publications Ltd, Aedermannsdorf, Switzerland, 1998), pp. 108, 149.

    Book  Google Scholar 

  25. C.D. Rosa, C. Park, E.L. Thomas, and B. Lotz, Nature 405, 433 (2000).

    Article  Google Scholar 

  26. D.R. Askeland, The Science and Engineering of Materials, 3rd ed. (PWS Publishing Company, Boston, MA, 1994), p. 280.

    Google Scholar 

  27. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, London, 1992), p. 194.

  28. L. Schlapbach and A. Zuttel, Nature 414, 353 (2001).

    Article  CAS  Google Scholar 

  29. T. Akiyama, H. Isogai, and J.Yagi, J. Alloys Comp. 252, L1 (1997).

    Article  CAS  Google Scholar 

  30. K. Yamamoto, Y. Tsushio, S. Tanioka, T. Shimizu, T. Morishita, S. Orimo, and H. Fujii, J. Alloys Comp. 231, 689 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, N.G., Deng, C.J., Yu, P. et al. Formation of Mg–Mg2Cu nanostructured eutectic in Mg-based metal matrix composite. Journal of Materials Research 18, 1934–1942 (2003). https://doi.org/10.1557/JMR.2003.0269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0269

Navigation