Skip to main content
Log in

Effect of hydrogen dilution on electronic properties of a-SiHx films deposited by low-frequency plasma

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of hydrogen dilution during plasma deposition on hydrogen incorporation and the optical and electrical properties of a-SiHx films were studied. The films were grown in capacitive low-frequency (f = 10 and 110 kHz) discharge in SiH4 diluted with H2, varying the ratio RH of the gases H2/SiH4 from RH = 0 to 40. The optical absorption coefficient and optical bandgap were changed with RH. Si–H bonding, studied by infrared spectroscopy, depended on RH. Hydrogen concentration in the films estimated from infrared spectra was in the range 20–30%. We observed the significant effect of RH on the temperature dependence of conductivity σ(T) and on the subgap absorption spectra measured by the constant photocurrent method. The reduction of subgap absorption up to 1.5 order of magnitude was observed with increasing RH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Platz, D. Fisher, S. Dubail, and A. Shah, Sol. Energy Mater. Sol. Cells 46, 157 (1997).

    Article  CAS  Google Scholar 

  2. Y. Nakata, H. Sannomijya, S. Morigaki, Y. Inove, K. Nomoto, A. Yokota, M. Itoh, and T. Tsuji, Optoelectronics Devices and Technology 5, 209 (1990).

    CAS  Google Scholar 

  3. L. Sansonnes, A.A. Howling, J. Ballutaud, and Ch. Hollenstein, in 27th EPS Conf. On Contr. Fusion and Plasma Phys. (ECA Vol. 24B), pp. 1268–1271.

  4. B.A. Korevaar, G.J. Andriaenssens, A.H.M. Smets, V.M.M. Kessels, H-Z. Song, M.C.M. Van de Sanden, and D.C. Schram, J. Non-Cryst. Solids 266, 380 (2000).

    Article  Google Scholar 

  5. B.A. Budagyan, A.A. Aivazov, A.Yu. Sazonov, A.A. Popov, and A.E. Berdnikov, in Amorphous and Microcrystalline Silicon Technology, 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schrapp, and I. Shimizu (Mat. Res. Soc. Symp. Proc. 467, Pittsburgh, PA, 1997), p. 585.

  6. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983).

    Article  CAS  Google Scholar 

  7. R. Swanepoel, J. Phys. E Sci. Instrum. 17, 896 (1984).

    Article  CAS  Google Scholar 

  8. M.H. Brodsky, M. Cardona, and J.C. Cuomo, Phys. Rev. B 16, 3556 (1977).

    Article  CAS  Google Scholar 

  9. C.J. Fang, K.L. Gruntz, L. Ley, M. Cardona, F.J. Demond, G. Muller, and S. Kalbitzer, J. Non-Cryst. Solids 35–36, 255 (1980).

    Article  Google Scholar 

  10. H. Shanks, C.J. Fang, L. Ley, M. Cardona, F.J. Demond, and S. Kalbitzer, Phys. Status Solidi (b) 43, 100 (1980).

    Google Scholar 

  11. M. Vanecek, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, Sol. Energy Mater. 8, 411 (1983).

    Article  CAS  Google Scholar 

  12. M. Cardona, Phys. Status Solidi (b) 118, 463 (1983).

    Article  CAS  Google Scholar 

  13. H. Wagner, R. Butz, U. Backes, and D. Bruchmann, Solid State Commun. 38, 1155 (1981).

    Article  CAS  Google Scholar 

  14. M. Cardona, Phys. Status Solidi (b) 118, 463 (1983).

    Article  CAS  Google Scholar 

  15. P. Roca i Cabarrocas, S. Hamma, S.N. Sharma, G. Viera, E. Bertran, and J. Costa, J. Non-Cryst. Solids 227–230, 871 (1998).

    Article  Google Scholar 

  16. W. Beyer, in Tetrahedrally Bonded Amorphous Semiconductors, edited by D. Adler and H. Fritsche (NY, 1985), p. 129.

  17. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, U.K. 1979).

    Google Scholar 

  18. S. Guha, K.L. Narasimhan, and S.M. Petruszko, J. Appl. Phys. 52, 859 (1981).

    Article  CAS  Google Scholar 

  19. E. Vallat-Sauvain, U. Kroll, J. Meier, N. Wyrsch, and A. Shah, J. Non-Cryst. Solids 266–269, 125 (2000).

    Article  Google Scholar 

  20. R. Platz, C. Hof, S. Wieder, B. Rech, D. Fischer, A. Shah, A. Payne, and S. Wagner, in Amorphous and Microcrystalline Silicon Technology–1988, edited by S. Wagner, M. Hack, H.M. Branz, R. Schrapp, and I. Shimizu (Mat. Res. Soc. Symp. Proc. 507, Warrendale, PA, 1998), p. 565.

  21. B.G. Budagian, A.A. Popov, A.Y. Sazonov, M.N. Bosyakov, D.M. Grunsky, and D.W. Zhuk, J. Non-Cryst. Solids 227–230, 39 (1998).

    Article  Google Scholar 

  22. B.G. Budagian, A.A. Sherchenkov, D.A. Stryahilev, A.Y. Sazonov, A.G. Radosel’sky, V.D. Chernomordic, A.A. Popov, and J.W. Metselaar, J. Electrochem. Soc. 145(7), 2508 (1998).

    Article  Google Scholar 

  23. B.G. Budagian and A.A. Aivazov, in Amorphous and Microcrystalline Silicon Technology–1988, edited by S. Wagner, M. Hack, H.M. Branz, R. Schrapp, and I. Shimizu (Mat. Res. Soc. Symp. Proc. 507, Warrendale, PA, 1998), p. 493.

  24. J.P.M. Schmitt, J. Non-Cryst. Solids 59–60, 649 (1983).

    Article  Google Scholar 

  25. A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A. Yuuki, and J. Perrin, Surf. Sci. 227, 50 (1990).

    Article  CAS  Google Scholar 

  26. J.R. Doyle, D.A. Doughty, and A. Callagher, J. Appl. Phys. 71, 4771 (1992).

    Article  CAS  Google Scholar 

  27. S. Veprek, Thin Solid Films 175, 129 (1989).

    Article  CAS  Google Scholar 

  28. J. Perrin, Ch. Bohm, R. Etemadi, and L. Loret, Plasma Sources Sci. Technol. 3, 252 (1994).

    Article  CAS  Google Scholar 

  29. R. Alben, Phys. Rev. B 11, 2271 (1975).

    Article  CAS  Google Scholar 

  30. P. Roca i Cabarrocas, in Amorphous and Microcrystalline Silicon Technology–1998, edited by S. Wagner, M. Hack, H.M. Branz, R. Schrapp, and I. Shimizu (Mat. Res. Soc. Symp. Proc. 507, Warrendale, PA, 1998), p. 855.

  31. C.R. J.M. Pearce, R.J. Koval, X. Niu, A.S. Ferlauto, J. Koh, and R.W. Collins, in Amorphous and Heterogenous Silicon-Based Films–2002, edited by J.R. Abelson, J.B. Boyce, J.D. Cohen, H. Matsumura, and J. Robertson (Mat. Res. Soc. Symp. Proc. 715, Warrendale, PA, 2002), p. A13.4.1.

  32. E.A.G. Hamers, A. Fontcuberta i Morral, C. Niikura, R. Brenot, and P. Roca i Cabarrocas, J. Appl. Phys. 88, 3674 (2000).

    Article  CAS  Google Scholar 

  33. A.I. Kosarev, A.S. Smirnov, A.S. Abramov, A.J. Vinogradov, A. Yu, Ustavchikov, M.V. Shutov, J. Vac. Sci. Technol. A 15(2), 298 (1997).

    Article  CAS  Google Scholar 

  34. M.A. Liberman and A.J. Lichtenberg, Principles of Plasma Discharges and Material Processing (J. Wiley and Sons, NY, 1994), p. 333.

    Google Scholar 

  35. A. Matsuda, T. Kaga, H. Tanaka, and K. Tanaka, Jpn. J. Appl. Phys. 23(8), L567 (1984).

    Article  Google Scholar 

  36. M. Shinozuma, G. Tochitani, H. Ohno, H. Tagashirs, and J. Nakahara, J. Appl. Phys. 66(1), 447 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosarev, A.I., Torres, A.J., Zuniga, C. et al. Effect of hydrogen dilution on electronic properties of a-SiHx films deposited by low-frequency plasma. Journal of Materials Research 18, 1918–1925 (2003). https://doi.org/10.1557/JMR.2003.0268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0268

Navigation