Skip to main content
Log in

Atomic-scale simulations of cascade overlap and damage evolution in silicon carbide

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In a previous computer-simulation experiment, the accumulation of damage in silicon carbide (SiC) from the overlap of 10 keV Si displacement cascades at 200 K was investigated, and the damage states produced following each cascade were archived for further analysis. In the current study, interstitial clustering, system energy, and volume changes are investigated as the damage states evolve due to cascade overlap. An amorphous state is achieved at a damage energy density of 27.5 eV/atom (0.28 displacements per atom). At low-dose levels, most defects are produced as isolated Frenkel pairs, with a small number of defect clusters involving only four to six atoms; however, after the overlap of five cascades (0.0125 displacements per atom), the size and number of interstitial clusters increases with increasing dose. The average energy per atom increases linearly with increasing short-range (or chemical) disorder. The volume change exhibits two regimes of linear dependence on system energy and increases more rapidly with dose than either the energy or the disorder, which indicates a significant contribution to swelling of isolated interstitials and antisite defects. The saturation volume change for the cascade-amorphized state in these simulations is 8.2%, which is in reasonable agreement with the experimental value of 10.8% in neutron-irradiated SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gao and W.J. Weber, Phys. Rev. B 63, 054101 (2000).

    Article  Google Scholar 

  2. F. Gao, W.J. Weber, and W. Jiang, Phys. Rev. B 63, 214106 (2001).

    Article  Google Scholar 

  3. R. Devanathan, W.J. Weber, and F. Gao, J. Appl. Phys. 90, 2303 (2001).

    Article  CAS  Google Scholar 

  4. W.J. Weber, N. Yu, and L.M. Wang, J. Nucl. Mater. 253, 53 (1998).

    Article  CAS  Google Scholar 

  5. W.J. Weber, L.M. Wang, N. Yu, and N.J. Hess, Mater. Sci. Eng. A 253, 62 (1998).

    Article  Google Scholar 

  6. W. Bolse, Nucl. Instrum. Methods Phys. Res. B 148, 83 (1999).

    Article  CAS  Google Scholar 

  7. L. Giancarli, J.P. Bonal, A. Caso, G. Le Marois, N.B. Morley, and J.F. Salavy, Fusion Eng. Des. 41, 165 (1998).

    Article  CAS  Google Scholar 

  8. B.G. Kim, Y. Choi, J.W. Lee, Y.W. Lee, D.S. Sohn, and G.M. Kim, J. Nucl. Mater. 281, 163 (2000).

    Article  CAS  Google Scholar 

  9. K. Minato, K. Sawa, K. Koya, T. Tomita, A. Ishikawa, C.A. Baldwin, W.A. Gabbard, and C.M. Malone, Nucl. Technology 131(1), 36 (2000).

    Article  CAS  Google Scholar 

  10. J.A. Lake, R.G. Bennett, and J.F. Kotek, Sci. Am. 286(1), 73 (2002).

    Article  CAS  Google Scholar 

  11. H. Inui, H. Mori, and H. Fujita, Philos. Mag. B 61, 107 (1990).

    Article  CAS  Google Scholar 

  12. H. Inui, H. Mori, and T. Sakata, Philos. Mag. B 66, 737 (1992).

    Article  CAS  Google Scholar 

  13. A. Matsunaga, C. Kinoshita, K. Nakai, and Y. Tomokiyo, J. Nucl. Mater. 179–181, 457 (1991).

    Article  Google Scholar 

  14. L.L. Snead and J.C. Hay, J. Nucl. Mater. 273, 213 (1999).

    Article  CAS  Google Scholar 

  15. E. Wendler, A. Heft, and W. Wesch, Nucl. Instrum. Methods Phys. Res. B 141, 117 (1998).

    Article  Google Scholar 

  16. W.J. Weber and L.M. Wang, Nucl. Instrum. Methods Phys. Res. B 106, 298 (1995).

    Article  CAS  Google Scholar 

  17. W.J. Weber, W. Jiang, and S. Thevuthasan, Nucl. Instrum. Methods Phys. Res. B 166–167, 410 (2000).

    Article  Google Scholar 

  18. W.J. Weber, W. Jaing, and S. Thevuthasan, Nucl. Instr. Meth. Phys. Res. B 175–177, 26 (2001).

    Article  Google Scholar 

  19. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, and S.J. Zinkle, J. Mater. Res. 13, 1434 (1998).

    Article  CAS  Google Scholar 

  20. W.J. Weber, Nucl. Instr. Meth. Phys. Res. B 166–167, 98 (2000).

    Article  Google Scholar 

  21. F. Gao and W.J. Weber, Phys. Rev. B 66, 024106 (2002).

    Article  Google Scholar 

  22. F. Gao and W.J. Weber, J. Mater. Res. 17, 259 (2002).

    Article  CAS  Google Scholar 

  23. F. Gao, W.J. Weber, and R. Devanathan, Nucl. Instr. Meth. Phys. Res. B 191, 487 (2002).

    Article  CAS  Google Scholar 

  24. L. Malerba and J.M. Perlado, J. Nucl. Mater. 289, 57 (2001).

    Article  CAS  Google Scholar 

  25. L.W. Hobbs, A.N. Sreeram, C.E. Jesurum, and B.A. Berger, Nucl. Instr. Meth. Phys. Res. B 116, 18 (1996).

    Article  CAS  Google Scholar 

  26. W.J. Weber and R.C. Ewing, in Scientific Basis for Nuclear Waste Management XXV, edited by B.P. McGrail and G.A. Cragnolino (Mater. Res. Soc. Symp. Proc., 713, Warrendale, PA 2002), pp. 443–454.

  27. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  28. X. Yuan and L.W. Hobbs, Nucl. Instr. Meth. Phys. Res. B 191, 74 (2002).

    Article  CAS  Google Scholar 

  29. P.C. Gehlen and J.B. Cohen, Phys. Rev. A 139, 844 (1965).

    Article  CAS  Google Scholar 

  30. V. Heera, J. Stoemenos, R. Ko¨gler, and W. Skorupa, J. Appl. Phys. 77, 2999 (1995).

    Article  CAS  Google Scholar 

  31. R. Nipoti, E. Albertazzi, M. Bianconi, R. Lotti, G. Lulli, M. Cervera, and A. Carnera, Appl. Phys. Lett. 70, 3425 (1997).

    Article  CAS  Google Scholar 

  32. A. Romano, M. Bertolus, M. Defranceschi, and S. Yip, Nucl. Instr. Meth. Phys. Res. B 202, 100 (2003).

    Article  CAS  Google Scholar 

  33. W.J. Weber, J. Amer. Ceram. Soc. 76, 1729 (1993).

    Article  CAS  Google Scholar 

  34. Y. Zhang, W.J. Weber, W. Jiang, A. Hällen, and G. Possnert, J. Appl. Phys. 91, 6388 (2002).

    Article  CAS  Google Scholar 

  35. F.L. Vook and H.J. Stein, Radiat. Eff. 2, 23 (1969).

    Article  CAS  Google Scholar 

  36. W.J. Weber, J. Nucl. Mater. 98, 206 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Weber, W.J. Atomic-scale simulations of cascade overlap and damage evolution in silicon carbide. Journal of Materials Research 18, 1877–1883 (2003). https://doi.org/10.1557/JMR.2003.0262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0262

Navigation