Skip to main content
Log in

Low-temperature metalorganic chemical vapor deposition of Al2O3 for advanced complementary metal-oxide semiconductor gate dielectric applications

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A low-temperature metalorganic chemical vapor deposition process was developed and optimized, using a design of experiments approach, for the growth of ultrathin aluminum oxide (Al2O3) as a potential gate dielectric in emerging semiconductor device applications. The process used the aluminum β-diketonate metalorganic precursor [aluminum(III) 2,4-pentanedionate] and water as, respectively, the metal and oxygen source reactants to grow Al2O3 films over a temperature range from 250 to 450 °C. The resulting films were analyzed by x-ray photoelectron spectroscopy, x-ray diffraction measurements, Rutherford backscattering spectrometry, nuclear-reaction analysis for hydrogen profiling, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The as-deposited Al2O3 phase was amorphous and dense and exhibited carbon and hydrogen incorporation of, respectively, 1 and 10 at.%. Postannealing at 600 °C led to a reduction in hydrogen concentration to 1 at.%, while maintaining an amorphous Al2O3 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Feldman, E.P. Gusev, and E. Garfunkel, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by E. Garfunkel, E.P. Gusev, and A.Y. Vul’ (Kluwer Academic, Dordrecht, The Netherlands, 1998), p. 1.

  2. D. Buchanan, IBM J. Res. Dev. 45, 245 (1999).

    Article  Google Scholar 

  3. E.P. Gusev, M. Copel, E. Cartier, I.J.R. Baumvol, C. Krug, and M.A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000).

    Article  CAS  Google Scholar 

  4. K.J. Hubbard and D.G. Schlom, J. Mater. Res. 11, 329 (1996).

    Article  Google Scholar 

  5. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  6. Y. Kim, H. Park, J. Chun, and W. Lee, Thin Solid Films 237, 57 (1994).

    Article  CAS  Google Scholar 

  7. E. Ciliberto, I. Fragalà, R. Rizza, and G. Spoto, Appl. Phys. Lett. 67, 1624 (1995).

    Article  CAS  Google Scholar 

  8. T. Ito and Y. Sakai, Solid State Electron. 17, 751 (1970).

    Article  Google Scholar 

  9. T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shindoda, and S. Hirato, J. Appl. Phys. 52, 6434 (1981).

    Article  CAS  Google Scholar 

  10. Y. Shindoda and T. Kobayashi, J. Appl. Phys. 52, 6386 (1984).

    Article  Google Scholar 

  11. K. Seshan, Handbook of Thin Film Deposition Techniques, 2nd ed. (Noyes Publications, Park Ridge, NJ, 2001).

  12. T. Klein, D. Niu, and G. Parsons, in Ultrathin SiO2 and High-K Materials for ULSI Gate Dielectrics, edited by H.R. Huff, C.A. Richter, M.L. Green, G. Lucovsky, and T. Hattori (Mater. Res. Soc. Symp. Proc. 567, Warrendale, PA, 1999), p. 445.

  13. J. Kim, H. Marzouk, P. Reucroft, J. Robertson, and C. Hamrin, Jr., Appl. Phys. Lett. 62, 681 (1993).

    Article  CAS  Google Scholar 

  14. Q.T. Nguyen, J.N. Kidder, Jr., and S.H. Ehrman, Thin Solid Films 410, 42 (2002).

    Article  CAS  Google Scholar 

  15. M.P. Singh and S.A. Shivashankar, Surf. Coat. Technol. 161, 135 (2002).

    Article  CAS  Google Scholar 

  16. H. Nakai, O. Harasaki, and J. Sinohara, Mater. Chem. Phys. 54, 131 (1998).

    Article  CAS  Google Scholar 

  17. J.T. Harding, J.M. Kazarof, and M.A. Appel, NASA Technical Memo. 101309 (NASA Lewis Res. Cent., Cleveland, OH, 1988).

    Google Scholar 

  18. A.R. Barron, The Strem Chemiker, XIII-1 (Strem Chemicals, Newburyport, MA 01950, 1990).

    Google Scholar 

  19. K. Sugai, H. Okabayashi, T. Shinzawa, S. Kishida, A. Kobayashi, T. Yako, and H. Kadokura, J. Vac. Sci. Technol. 13, 2115 (1995).

    Article  CAS  Google Scholar 

  20. A.C. Dillon, A.W. Ott, J.D. Way, and S.M. George, Surf. Sci. 322, 230 (1995).

    Article  CAS  Google Scholar 

  21. T. Maruyama and S. Arai, Appl. Phys. Lett. 60, 322 (1992)

    Article  CAS  Google Scholar 

  22. C.S. Chang, Applications of Metal-Insulator-Metal (MIM) Capacitors, Technology Transfer # 00083985A-ENG (International SEMATECH, Austin, TX, August 31, 2000).

    Google Scholar 

  23. H.O. Pierson, Handbook of Chemical Vapor Deposition (Noyes Publications, Park Ridge, NJ, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skordas, S., Papadatos, F., Nuesca, G. et al. Low-temperature metalorganic chemical vapor deposition of Al2O3 for advanced complementary metal-oxide semiconductor gate dielectric applications. Journal of Materials Research 18, 1868–1876 (2003). https://doi.org/10.1557/JMR.2003.0261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0261

Navigation