Skip to main content
Log in

Self-propagating high-temperature synthesis microalloying of MoSi2 with Nb and V

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microalloying of MoSi2 to form Mo(1−x)MexSi2 (Me = Nb or V) was investigated by the self-propagating high-temperature synthesis method. With alloying element contents up to 5 at.%, a homogeneous C11b solid solution was obtained. For higher contents of alloying elements, the product contained both the C11b and the hexagonal C40 phases. The relative amount of the C40 phase increases with an increase in the content of alloying metals in the starting mixture. The alloying element content in the hexagonal C40 Mo(1−x)MexSi2 phase was nearly constant at a level of about 12 at.% for all starting compositions. In contrast, the content of the alloying elements in the tetragonal phase is considerably lower (around 4 at.%) and increases slightly as the Me content in the starting mixture is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chin, D.L. Anton, and F. Giamei, in High Temperature Silicides and Refractory Alloys, edited by C.L. Briant, J.J. Petrovic, B.P. Bewlay, A.K. Vasudevan, and H.A. Lipsitt (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, PA, 1994), p. 423.

  2. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M.A. Stucke, Mater. Sci. Eng. A 240, 1 (1997).

    Article  Google Scholar 

  3. J.J. Petrovic and A.K. Vasudevan, Mater. Sci. Eng. A 261, 1 (1999).

    Article  Google Scholar 

  4. T.E. Mitchell, R.G. Castro, J.J. Petrovic, S.A. Maloy, O. Unal, and M.M. Chadwick, Mater. Sci. Eng. A 155, 241 (1992).

    Article  Google Scholar 

  5. J. Milne, Instant Heat (Kinetic Metals, Derby, CT, 1985).

    Google Scholar 

  6. R.K. Wade and J.J. Petrovic, J. Am. Ceram. Soc. 75, 1682 (1992).

    Article  CAS  Google Scholar 

  7. A. Misra, A.A. Sharif, J.J. Petrovic, and T.E. Mitchell, in High-Temperature Ordered Intermetallic Alloys IX, edited by J.H. Schneibel, S. Hanada, K.J. Hemker, R.D. Noebe, and G. Sauthoff (Mater. Res. Soc. Symp. Proc. Pittsburgh, PA, 646, (2000), p. 1.

  8. K. Yanagihara, T. Maruyama, and K. Nagata, Intermetallics 4, S133 (1996).

    Article  CAS  Google Scholar 

  9. A. Stergiou, P. Tsakiropoulos, and A. Brown, Intermetallics 5, 69 (1997)

    Article  CAS  Google Scholar 

  10. D.E. Alman and N.S. Stoloff, Metall. Mater. Trans. A 25A, 1033 (1994)

    Article  CAS  Google Scholar 

  11. K. Ito, T. Yano, T. Nakamoto, H. Inui, and M. Yamaguchi, Intermetallics 4, S119 (1996).

    Article  CAS  Google Scholar 

  12. U.V. Waghmare, E. Kaxiras, V.V. Bulatov, and M.S. Duesbery, Modelling Simul. Mater. Sci. Eng. 6, 493 (1998).

    Article  CAS  Google Scholar 

  13. J.N. Woolman, J.J. Petrovic, and Z.A. Munir, Scipta Mater. 48, 819 (2003).

    Article  CAS  Google Scholar 

  14. J.N. Woolman, Ph.D. Thesis, University of California, Davis, CA (2003).

  15. D. Yi, Z. Lai, C. Yi, O.M. Akselsen, and J.H. Ulvensoen, Metall. Mater. Trans. 29A, 119 (1998).

    Article  CAS  Google Scholar 

  16. W.J. Boettinger, J.H. Perepezko, and P.S. Frankwicz, Mater. Sci Eng. A 155, 33 (1992).

    Article  Google Scholar 

  17. X. Fan and T. Ishigaki, J. Cryst. Growth 171, 166 (1997).

    Article  CAS  Google Scholar 

  18. Y. Harada, Y. Funato, M. Morinaga, A. Ito, and Y. Sugita, J. Jpn. Inst. Met. 58, 1239 (1994).

    Article  CAS  Google Scholar 

  19. A.R. Sarkisyan, S.K. Dulokhanyan, I.P. Borvinskaya, and A.G. Merzhanov, Combust. Explos. Shock Wave 14, 310 (1978).

    Article  Google Scholar 

  20. S. Zhang and Z.A. Munir, J. Mater. Sci. 26, 3685 (1991).

    Article  CAS  Google Scholar 

  21. S.C. Deevi, Mater. Sci. Eng. A 149, 241 (1992).

    Article  Google Scholar 

  22. I.J. Shon and Z.A. Munir, Mater. Sci. Eng. A 202, 256 (1995).

    Article  Google Scholar 

  23. S.B. Bhaduri, J.G. Huang, S. Bhaduri, and A. Chrysanthou, Ceram. Eng. Sci. Proc. 19, 405 (1998).

    Article  CAS  Google Scholar 

  24. S.C. Deevi, J. Mater. Sci. 26, 3343 (1991).

    Article  CAS  Google Scholar 

  25. U. Anselmi-Tamburini, M. Arimondi, F. Maglia, G. Spinolo, and Z.A. Munir, J. Am. Ceram. Soc. 81, 1765 (1998).

    Article  CAS  Google Scholar 

  26. G. Spinolo and F. Maglia, Powder Diffraction 14, 208 (1999).

    Article  CAS  Google Scholar 

  27. P. Peralta, S.A. Maloy, F. Chu, J.J. Petyrovic, and T.E. Mitchell, Scripta Mater. 37, 1599 (1997).

    Article  CAS  Google Scholar 

  28. E.I. Gladyshevskii, V.I. Lakh, R.V. Skolozdra, and B.I. Stasnik, Sov. Powder Metall. Metal: Ceram. 4, 278 (1964).

    Google Scholar 

  29. E.M. Savitskiy, V.V. Baron, M.I. Bychkova, S.A. Bakuta, and E.I. Gladyshevskiy, Izv. Akad. Nauk SSSR, Met. 2, 159 (1965).

    Google Scholar 

  30. E.M. Savitskiy, V.V. Baron, Yu.V. Evimof, and E.I. Gladyshevskiy, Zh. Neorg. Khim. 7, 1117 (1962).

    Google Scholar 

  31. V.N. Svechnikov, Yu.A. Kocherzhinshy, and L.M. Yupko, Dokl. Akad. Nauk, Ukrain, RSR 6A, 566 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglia, F., Milanese, C., Anselmi-Tamburini, U. et al. Self-propagating high-temperature synthesis microalloying of MoSi2 with Nb and V. Journal of Materials Research 18, 1842–1848 (2003). https://doi.org/10.1557/JMR.2003.0257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0257

Navigation