Skip to main content
Log in

On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A closed-form model was proposed to evaluate the elastic properties of nanocrystalline materials as a function of grain size. Grain-boundary sliding, present in nanocrystalline materials even at relatively low temperatures, was included in the formulation. The proposed analytical model agrees reasonably well with the experimental results for nanocrystalline copper and palladium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. R.W. Siegel, Nanostruct. Mater. 4, 121 (1994).

    Article  Google Scholar 

  3. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  4. H. Gleiter, Acta Metall. 48, 1 (2000).

    CAS  Google Scholar 

  5. J.G. Sevillano, I.O. Arizcorreta, and L.P. Kubin, Mater. Sci. Eng. A A 309–310, 393 (2001).

    Article  Google Scholar 

  6. H.H. Fu, D.J. Benson, and M.A. Meyers, Acta Mater. 49, 2567 (2001).

    Article  CAS  Google Scholar 

  7. S. Takeuchi, Scripta Mater. 44, 1483 (2001).

    Article  CAS  Google Scholar 

  8. M.B. Bush, Mater. Sci. Eng. A A 161, 127 (1993).

    Article  Google Scholar 

  9. H.S. Kim, C. Suryanarayana, S.J. Kim, and B.S. Chun, Powder Metall. 41, 217 (1998).

    Article  Google Scholar 

  10. H.S. Kim and M.B. Bush, Nanostruct. Mater. 11, 361 (1999).

    Article  CAS  Google Scholar 

  11. H. Van Swygenhoven, M. Spaczer, and A. Caro, Acta Mater. 47, 561 (1999).

    Google Scholar 

  12. H. Conrad and J. Narayan, Scripta Mater. 42, 1025 (2000).

    Article  CAS  Google Scholar 

  13. R. Chaim, J. Mater. Res. 12, 1828 (1997).

    Article  CAS  Google Scholar 

  14. J.D. Eshelby, Proc. R. Soc. London A 241, 376 (1957).

    Article  Google Scholar 

  15. Y. Benveniste, Mech. Mater. 6, 147 (1987).

    Article  Google Scholar 

  16. T. Mura, Micro-Mechanics of Defects of Solids (Martinus Nijhoff, Dordrecht, The Netherlands, 1987).

    Book  Google Scholar 

  17. J.H. Huang, Mater. Sci. Eng. A A 315, 11 (2001).

    Article  Google Scholar 

  18. P.G. Sanders, J.A. Eastman, and J.R. Weertman, in Processing and Properties of Nanocrystalline Materials, edited by C. Suryanarayana, J. Singh, and F.H. Froes (The Minerals, Metals and Materials Society, Warrendale, PA, 1996).

  19. D.E. Polk, B.C. Giessen, and F.S. Gardner, Mater. Sci. Eng. 25, 309 (1976).

    Article  Google Scholar 

  20. D. Korn, A. Morsch, R. Berringer, W. Arnold, and H. Gleiter, J. Phys. 49, C5, Suppl. 10-769 (1988).

    Google Scholar 

  21. M. Weller, J. Diehl, and H.E. Schaefer, Philos. Mag. A 63, 527 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Ganti, S. On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding. Journal of Materials Research 18, 1823–1826 (2003). https://doi.org/10.1557/JMR.2003.0253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0253

Navigation