Skip to main content
Log in

Ferroelectric domains in coarse-grained lead zirconate titanate ceramics characterized by scanning force microscopy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferroelectric domain configurations in silver- and lanthanum-doped lead zirconate titanate (PZT) ceramics were characterized by scanning force microscopy using contact as well as piezoelectric response force [i.e., piezoelectric force microscopy (PFM)] modes. Coarse crystallites of hard and soft PZT ceramics (12 μm in Ag-PZT and 30 μm in La-PZT average grain size, respectively) with surface oriented in the {001} planes were chosen to characterize the domain configuration. Results show the conventional right-angled domain structures, which correspond to the {110} twin-related 90° and 180° domains of homogeneous width from 50 to 150 nm. The ability of PFM to image the orientation of pure in-plane arrays of domains (containing 90°-aa- and 180°-aa-types of domain boundaries) is highlighted, and a more detailed notation for in-plane domains is proposed. In addition to such periodical domain arrays, other ordered domains were found, having a misfit of 26° with respect to the{110} domain walls and the {100} surface. This array of domain walls could not be predicted with a geometrical analysis of the intersection of domain walls at the surface according to the conventional spatial array of {110} crystallographic planes. It could be explained only with {210} planes being the domain walls. The reason for this unconventional domain configuration is explained with the clamped conditions of the investigated crystallites in the polycrystalline material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Forsbergh, Jr., Phys. Rev. 76, 1187 (1949).

    Article  CAS  Google Scholar 

  2. W.J. Merz, Phys. Rev. 95, 690 (1954).

    Article  CAS  Google Scholar 

  3. J.A. Hooton and W.Z. Merz, Phys. Rev. 98, 409 (1954).

    Article  Google Scholar 

  4. W.R. Cook, Jr., J. Am. Ceram. Soc. 39, 17 (1956).

    Article  CAS  Google Scholar 

  5. G. Arlt and P. Sasko, J. Appl. Phys. 51, 4956 (1980).

    Article  CAS  Google Scholar 

  6. G. Arlt and P. Sasko, J. Mater. Sci. 25, 2655 (1990).

    Article  CAS  Google Scholar 

  7. Y.H. Hu, H.M. Chan, Z.X. Wen, and M.P. Harmer, J. Am. Ceram. Soc. 69, 594 (1986).

    Article  CAS  Google Scholar 

  8. T. Malis and H. Gleiter, J. Appl. Phys. 47, 5195 (1976).

    Article  CAS  Google Scholar 

  9. F. Tsai, V. Khiznichenko, and J.M. Cowley, Ultramicroscopy 45, 55 (1992).

    Article  CAS  Google Scholar 

  10. J.F. Chou, M.H. Lin, and H.Y. Lu, Acta Mater. 48, 3569 (2000).

    Article  CAS  Google Scholar 

  11. B.M. Park and S.J. Chung, J. Am. Ceram. Soc. 77, 3193 (1994).

    Article  CAS  Google Scholar 

  12. J. Munoz Saldana, G.A. Schneider, and L.M. Eng, Surf. Sci. 480, L402 (2001).

    Article  Google Scholar 

  13. M. Takashige, S. Hamazaki, Y. Takahashi, F. Shimizu, and T. Yamaguchi, Jpn. J. Appl. Phys. 38, 5686 (1999).

    Article  CAS  Google Scholar 

  14. L.M. Eng, H-J. Guentherodt, G.A. Schneider, U. Koepke, and J. Munoz Saldana, Appl. Phys. Lett. 74, 233 (1999).

    Article  CAS  Google Scholar 

  15. C.C. Chou, C.S. Hou, and C.L. Li, J. Mat. Sci. 10, 299 (1999).

    CAS  Google Scholar 

  16. Y.G. Wang, J. Dec, and W. Kleemann, J. Appl. Phys. 84, 6795 (1998).

    Article  CAS  Google Scholar 

  17. B.G. Demczyk, R.S. Ray, and G. Thomas, J. Am. Ceram. Soc. 73, 615 (1990).

    Article  CAS  Google Scholar 

  18. S. Cheng, I.K. Lloyd, and M. Kahn, J. Am. Ceram. Soc. 75, 2293 (1992).

    Article  CAS  Google Scholar 

  19. M. Hammer, C. Monty, A. Endriss, and M.J. Hoffmann, J. Am. Ceram. Soc. 81, 721 (1998).

    Article  CAS  Google Scholar 

  20. T. Yamamoto, Y. Ikuhara, K. Hayashi, and T. Sakuma, J. Mater. Res. 13, 3449 (1998).

    Article  CAS  Google Scholar 

  21. J. Munoz Saldana, Untersuchung der ferroelastischen und ferroelektrischen Eigenschaften von BaTiO3 and PZT-Keramiken mit dem Rasterkraftmikroskop (AFM), No. 664 (Fortschritt-Berichte VDI, Dusseldorf, 2001), pp. 79–93.

  22. C. Harnagea, Ph.D. Thesis, Martin Luther University, Halle, Germany (2001), p. 21.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Saldaña, J., Hoffmann, M.J. & Schneider, G.A. Ferroelectric domains in coarse-grained lead zirconate titanate ceramics characterized by scanning force microscopy. Journal of Materials Research 18, 1777–1786 (2003). https://doi.org/10.1557/JMR.2003.0247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0247

Navigation