Skip to main content
Log in

Optimum tribological improvement of aluminum using oxygen plasma source ion implantation

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aluminum and its alloys show poor tribological properties. Oxygen plasma source ion implantation is an emerging technology for the improvement of the surface mechanical properties of these materials. We found an optimum O ion dose, corresponding to 35 at.% O, for which we were able to obtain nanohardness enhancements by factors of 2× and 3× for pure and alloyed (AA7075) Al, respectively. Nanoscratch test results showed reductions in the scratch depths and the friction coefficients by nearly the same factors. It is also important to control the process temperature (∼160 °C). These improvements are due to the formation of a smooth, stiff, but nonbrittle metal–oxide (Al–Al2O3) nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metals Handbook, 8th ed., edited by T. Lyman (ASM, Metals Park, OH, 1961), Vol. 1, p. 917.

  2. Smithells Metals Reference Book, 6th ed., edited by E.A. Brandes (Butterworths, London, 1983), Chap. 22.

  3. R.S. Bourcier, S.M. Myers, and D.H. Polonis, Nucl. Instrum. Methods B 44, 278 (1990).

    Article  Google Scholar 

  4. D. Popovici, M. Bolduc, B. Terreault, A.H. Sarkissian, B.L. Stansfield, R.W. Paynter, and D. Bourgoin, J. Vac. Sci. Technol. A 17, 1996 (1999).

    Article  CAS  Google Scholar 

  5. M. Bolduc, D. Popovici, and B. Terreault, Surf. Coat. Technol. 138, 125 (2001).

    Article  CAS  Google Scholar 

  6. J.R. Conrad, J.L. Radtke, R.A. Dodd, and F.J. Worzola, J. Appl. Phys. 62, 4591 (1987).

    Article  CAS  Google Scholar 

  7. M. Bolduc and B. Terreault, Appl. Phys. Lett. 82, 895 (2003).

    Article  CAS  Google Scholar 

  8. R.K. Hart, Proc. R. Soc. A 236, 68 (1956).

    CAS  Google Scholar 

  9. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  10. E.W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleoden, and J. Nelson, J. Mater. Res. 13, 421 (1998).

    Article  CAS  Google Scholar 

  11. Support Note No. 225, Rev. F (Digital Instruments Inc., Santa Barbara, CA, 1998).

  12. J-A. Ruan and B. Bhushan, J. Tribol. 116, 378 (1994).

    Article  CAS  Google Scholar 

  13. B. Du, M.R. Vanlandingham, Q. Zang, and T. He, J. Mater. Res. 16, 1487 (2001).

    Article  CAS  Google Scholar 

  14. M. Bolduc, B. Terreault, A. Reguer, E. Shaffer, and R.G. St-Jacques (unpublished).

  15. J.I. Gersten and F.W. Smith, The Physics and Chemistry of Materials (Wiley, New York, 2001), Chap. 21; Web supplement, ftp://ftp.wiley.com/public/sci_tech_med/materials p. W381.

    Google Scholar 

  16. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich, Acta Mater. 47, 333 (1998).

    Article  Google Scholar 

  17. J. Jagielski, A. Piatkowska, P. Aubert, C. Legrand-Buscema, C. Le Paven, G. Gawlik, J. Piekoszewski, and Z. Werner, Vacuum 70, 147 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolduc, M., Terreault, B., Reguer, A. et al. Optimum tribological improvement of aluminum using oxygen plasma source ion implantation. Journal of Materials Research 18, 1761–1764 (2003). https://doi.org/10.1557/JMR.2003.0244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0244

Navigation