Skip to main content
Log in

High-density aligned carbon nanotubes with uniform diameters

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new method was found to synthesize large-area (7 × 15 mm2), high-density (higher than 109 cm−2), aligned carbon nanotubes (CNTs) with uniform diameters on a silica wafer. Ferrocene/melamine mixtures were pyrolyzed through a three-step process in an Ar atmosphere in a single-stage furnace. The structure and composition of the CNTs were investigated by scanning electron microscopy, transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and electron energy-loss spectroscopy (EELS). It was found that these nanotubes have uniform outer diameters of about 22 nm and varying lengths from 10 to 40 μm. High-resolution TEM images showed that CNT is composed of graphite-like layers arranged in a stacked-cup-like structure. XPS results showed that the layer covering the tops of the aligned CNTs consists of carbon and iron. The EELS spectrum showed that these tubes are pure carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. W.A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  Google Scholar 

  3. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H.J. Dai, Science 283, 512 (1999).

    Article  CAS  Google Scholar 

  4. P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Science 278, 100 (1997).

    Article  CAS  Google Scholar 

  5. S. Frank. P. Poncharal, Z.L. Wang, and W.A. De Heer, Science 280, 1744 (1998).

    Article  CAS  Google Scholar 

  6. S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Article  CAS  Google Scholar 

  7. C. White and T.N. Todorov, Nature 393, 240 (1998).

    Article  CAS  Google Scholar 

  8. M. Menon and D. Srivastava, Phys. Rev. Lett. 79, 443 (1997).

    Article  Google Scholar 

  9. R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Lqval, J.N. Barisci, B.M. Spinks, B.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzlet, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).

    Article  CAS  Google Scholar 

  10. G.L. Che, B.B. Lakschmi, E.R. Fisher, and C.R. Martin, Nature 393, 346 (1998).

    Article  CAS  Google Scholar 

  11. S.S. Wong, E. Joselevich, A.T. Woolley, C.I. Cheung, and C.M. Lieber, Nature 394, 52 (1998).

    Article  CAS  Google Scholar 

  12. S.S. Wong, A.T. Woolley, E. Joselevich, C. Cheung, and C.M. Lieber, J. Am. Chem. Soc. 120, 8557 (1998).

    Article  CAS  Google Scholar 

  13. M.S. Dresselhaus, Nature 358, 195 (1992).

    Article  Google Scholar 

  14. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, and P.M. Ajayan, Nature 416, 495 (2002).

    Article  CAS  Google Scholar 

  15. W.Q. Han, P.K. Redlich, T. Seeger, F. Ernst, M. Rühle, M. Terrones, and H. Terrones, Appl. Phys. Lett. 77, 1807 (2000).

    Article  CAS  Google Scholar 

  16. Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, and M.A. Reed, Appl. Phys. Lett. 75, 1086 (1999).

    Article  CAS  Google Scholar 

  17. S. Iijima, T. Ichihashi, and Y. Ando, Nature 356, 776 (1992).

    Article  CAS  Google Scholar 

  18. M. Terrones, H. Terrones, N. Grobert, W.K. Hsu, D.R.M. Walton, M. Rühle, and A.K. Cheetham, Appl. Phys. Lett. 75, 3932 (1999).

    Article  CAS  Google Scholar 

  19. E. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, and M.S. Dresselhaus, Appl. Phys. Lett. 80, 1267 (2002).

    Article  CAS  Google Scholar 

  20. D.Y. Zhong, S. Liu, G.Y. Zhang, and E.G. Wang, J. Appl. Phys. 89, 5939 (2001).

    Article  CAS  Google Scholar 

  21. N. Hellgren, M.P. Johansson, E. Broitman, L. Hultman, and J-E. Sundgren, Phys. Rev. B 59, 5162 (1999).

    Article  Google Scholar 

  22. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, and G. Wang, Science 274, 1701 (1996).

    Article  CAS  Google Scholar 

  23. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Nature 388, 52 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, P.J., Gu, Y.S., Liu, H.W. et al. High-density aligned carbon nanotubes with uniform diameters. Journal of Materials Research 18, 1686–1690 (2003). https://doi.org/10.1557/JMR.2003.0231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0231

Navigation