Skip to main content
Log in

Composition control of radio-frequency magnetron sputter-deposited La0.5Sr0.5CoO3−∂ thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For this paper, we used radio-frequency (rf) sputter deposition to synthesize epitaxial La0.5Sr0.5CoO3−∂ (LSCO) films. We investigated the influence of sputter deposition parameters, in particular, oxygen partial pressure, plasma power, total sputter pressure, and post-deposition cooling atmosphere on film composition, microstructure, and electrical resistivity. We show that rf sputtering from a single target can produce LSCO films with La/Sr and (La + Sr)/Co ratios of unity and with low electrical resistivities of about 1 mΩ cm. Film microstructures were characterized by high-resolution transmission electron microscopy and x-ray diffraction. Formation of an ordered film superlattice, most likely due to oxygen vacancy ordering, was observed. In this paper, we discuss the relationship between the film microstructure and the electrical resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. deSouza, S.J. Visco, and L.C. DeJonghe, J. Electrochem. Soc. 144, L35 (1997).

    Article  CAS  Google Scholar 

  2. C.A. Mims, N.I. Joos, P.A.W. v.d. Heide, A.J. Jacobson, C. Chen, C.W. Chu, B.I. Kim, and S.S. Perry, Electrochem. Solid-State Lett. 3, 59 (2000).

    Article  CAS  Google Scholar 

  3. J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, and K. Fueki, J. Electrochem. Soc. 136, 2082 (1989).

    Article  CAS  Google Scholar 

  4. O.F. Konochuk, T. Norby, and P. Kofstad, Phase Transitions 58, 145 (1996).

    Article  Google Scholar 

  5. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1995).

    Article  Google Scholar 

  6. Y. Teraoka, H-M. Zhang, S. Furukawa, N. Yamazoe, Chem. Lett. 1743 (1985).

  7. R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, D.K. Fork, Appl. Phys. Lett. 63, 3592 (1993).

    Article  CAS  Google Scholar 

  8. A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, and P. Kofstad, Solid State Ionics. 80, 189 (1995).

    Article  CAS  Google Scholar 

  9. P.M. Raccah and J.B. Goodenough, J. Appl. Phys. 39, 1209 (1968).

    Article  CAS  Google Scholar 

  10. E.A.F. Span, F.J.G. Roesthuis, D.H.A. Blank, and H. Rogalla, Appl. Phys. A 69, S783 (1999).

    Article  CAS  Google Scholar 

  11. S. Madhukar, S. Aggarwal, A.M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Pointdexter, J. Appl. Phys. 81, 3543 (1997).

    Article  CAS  Google Scholar 

  12. W. Wu, K.H. Wong, and C.L. Choy, Thin Solid Films 385, 298 (2001).

    Article  CAS  Google Scholar 

  13. J.T. Cheung, P.E.D. Morgan, D.H. Lowndes, X.Y. Zheng, and J. Breen, Appl. Phys. Lett. 62, 2045 (1993).

    Article  CAS  Google Scholar 

  14. Q.X. Jia, P.N. Arendt, C. Kwon, J.M. Roper, Y. Fan, J.R. Groves, S.R. Foltyn, J. Vac. Sci. Technol. A 16, 1380 (1998).

    Article  CAS  Google Scholar 

  15. H. Masumoto, S. Hiboux, and P. Muralt, Ferroelectrics 225, 1141 (1999).

    Article  CAS  Google Scholar 

  16. R.H.E. van Doorn and A.J. Burggraaf, Solid State Ionics. 128, 65 (2000).

    Article  Google Scholar 

  17. J. Kirchnerova and D.B. Hibbert, Mater. Res. Bull. 25, 585 (1990).

    Article  CAS  Google Scholar 

  18. S. Stemmer, A.J. Jacobson, X. Chen, and A. Ignatiev, J. Appl. Phys. 90, 3319 (2001).

    Article  CAS  Google Scholar 

  19. E.A.F. Span, F.J.G. Roesthuis, D.H.A. Blank, and H. Rogalla, Appl. Surf. Sci. 150, 171 (1999).

    Article  CAS  Google Scholar 

  20. R.A. Gunasekaran, J.D. Pedarnig, and M. Dinescu, Appl. Phys. A Mater. Sci. Proc. 69, 621 (1999).

    Article  CAS  Google Scholar 

  21. Z.L. Wang and J.S. Yin, Philos. Mag. B 77, 49 (1998).

    Article  CAS  Google Scholar 

  22. M.V. Raymond, H.N. Al-Shareef, B.A. Tuttle, D. Dimos, and Evans, in Ferroelectric Thin Films V, edited by S.B. Desu, B.A. Ramesh, Tuttle, R.E. Jones, and I.K. Yoo (Mater. Res. Soc. Symp. Proc. 433, Pittsburgh, PA, 1996), pp. 145–150.

    Google Scholar 

  23. F. Morin, G. Trudel, and Y. Denos, Solid State Ionics 96, 129 (1997).

    Article  CAS  Google Scholar 

  24. A. Hamerich, R. Wunderlich, and J. Muller, J. Vac. Sci. Technol. A 12, 2873 (1994).

    Article  CAS  Google Scholar 

  25. J.R. Gavaler, J. Talvacchio, T.T. Braggins, M.G. Forrester, and J. Greggi, J. Appl. Phys. 70, 4383 (1991).

    Article  CAS  Google Scholar 

  26. C.N.R. Rao, J. Gopalakrishnan, and K. Vidyasagar, Ind. J. Chem. 23A, 265 (1984).

    CAS  Google Scholar 

  27. H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A. Ahmad-Khanlou, Solid State Ionics. 138, 79 (2000).

    Article  CAS  Google Scholar 

  28. S. Ramesh, S.S. Manoharan, and M.S. Hegde, J. Mater. Chem. 5, 1053 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stemmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenov, D.O., Donner, W., Chen, L. et al. Composition control of radio-frequency magnetron sputter-deposited La0.5Sr0.5CoO3−∂ thin films. Journal of Materials Research 18, 188–194 (2003). https://doi.org/10.1557/JMR.2003.0026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0026

Navigation