Skip to main content
Log in

Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A model is developed that describes the sharp indentation behavior of time-dependent materials. The model constitutive equation is constructed from a series of quadratic mechanical elements, with independent viscous (dashpot), elastic (spring), and plastic (slider) responses. Solutions to this equation describe features observed under load-controlled indentation of polymers, including creep, negative unloading tangents, and loading-rate dependence. The model describes a full range of viscous–elastic–plastic responses and includes as bounding behaviors time-independent elastic–plastic indentation (appropriate to metals and ceramics) and time-dependent viscous–elastic indentation (appropriate to elastomers). Experimental indentation traces for a range of olymers with different material properties (elastic modulus, hardness, viscosity) are econvoluted and ranked by calculated time constant. Material properties for these polymers, deconvoluted from single load–unload cycles, are used to predict the indentation load–displacement behavior at loading rates three times slower and faster, as well as the steady-state creep rate under fixed load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. B. Wolf, Cryst. Res. Technol. 25, 377 (2000).

    Article  Google Scholar 

  4. J.S. Field and M.V. Swain, J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  5. Y-T. Cheng and C-M. Cheng, J. App. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  6. Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, S.P. Baker, and N. Burnham (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998).

    Google Scholar 

  7. Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001).

    Google Scholar 

  8. J-Y. Rho, M.E. Roy, T.Y. Tsui, and G.M. Pharr, J. Biomed. Mater. Res. 45, 48 (1999).

    Article  CAS  Google Scholar 

  9. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, and S.A. Goldstein, J. Biomech. 32, 1005 (1999).

    Article  CAS  Google Scholar 

  10. E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, J. Dent. 28, 589 (2000).

    Article  CAS  Google Scholar 

  11. B.J. Briscoe, K.S. Sebastian, and S.K. Sinha, Philos. Mag. A 74, 1159 (1996).

    Article  CAS  Google Scholar 

  12. B.J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D: Appl. Phys. 31, 2395 (1998).

    Article  CAS  Google Scholar 

  13. L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich, J. Polym. Sci. B: Polym. Phys. 38, 10 (2000).

    Article  CAS  Google Scholar 

  14. M. Sakai and S. Shimizu, J. Non-Cryst. Solids 282, 236 (2001).

    Article  CAS  Google Scholar 

  15. K.B. Yoder, S. Ahuja, K.T. Dihn, D.A. Crowson, S.G. Corcoran, L. Cheng, W.W. Gerberich, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, S.P. Baker, and N. Burnham (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 205.

    Google Scholar 

  16. S. Shimizu, T. Yanagimoto, and M. Sakai, J. Mater. Res. 14, 4075 (1999).

    Article  CAS  Google Scholar 

  17. G. Feng and A.H.W. Ngan, J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  18. B.N. Lucas, W.C. Oliver, G.M. Pharr, L-L. Loubet, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker . (Mater. Res. Soc. Symp. Proc. 436, Warrendale, PA, 1997), p. 233.

    Google Scholar 

  19. M.J. Adams, D.M. Gorman, and S.A. Johnson, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q7.10.1.

    Google Scholar 

  20. M. Oyen-Tiesma, Y.A. Toivola, and R.F. Cook, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q1.5.1.

    Google Scholar 

  21. W.N. Findley, J.S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover Publications, New York, 1989).

    Google Scholar 

  22. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  23. R.F. Cook and G.M. Pharr, J. Hard Mater. 5, 179 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyen, M.L., Cook, R.F. Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. Journal of Materials Research 18, 139–150 (2003). https://doi.org/10.1557/JMR.2003.0020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0020

Navigation