Skip to main content
Log in

Phase stability of epitaxial KTaxNb1−xO3 thin films deposited by metalorganic chemical vapor deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The phase stability of epitaxial KTaxNb1−xO3 (0 ≤ x ≤ 1) thin films, with compositions over the entire solid solution range, was investigated. KTaxNb1−xO3 thin films were deposited on (100) MgAl2O4 substrates by metalorganic chemical vapor deposition. Films with compositions x ≤ 0.30 were orthorhombic, as determined by x-ray diffraction. Dielectric measurements at room temperature indicated the presence of morphotropic phase boundaries at x = 0.30 and at x = 0.74. Temperature-dependent measurements of the dielectric constant for KNbO3 from 80 to 800 K indicated three structural phase transitions at 710, 520, and 240 K. For intermediate compositions, a decrease in the Curie and tetragonal–orthorhombic transition temperatures was observed with increasing Ta atomic percent, similar to the bulk phase equilibrium. In contrast to bulk materials, an increase in the orthorhombic–rhombohedral transition temperature with increasing x was observed for the films, resulting in the stabilization of a rhombohedral phase at room temperature for compositions 0.45 ≤ x ≤ 0.73. Differences between the phase stability for the thin films and bulk were attributed to lattice misfit strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, Appl. Phys. Lett. 71, 1783 (1997).

    Article  CAS  Google Scholar 

  2. D.E. Jones and D.L. Naylor, in Proceedings of InterPACK ’97, edited by E. Suhir, M. Shiratori, Y.C. Lee, and G. Subbarayan (ASME, Kohala Coast, HI, 1997), Vol. 1, p. 773.

    Google Scholar 

  3. S.R.J. Brueck and R.A. Myers, in Epitaxial Oxide Thin Films and Heterostructures, edited by D.K. Fork, J.M. Phillips, R. Ramesh, and R.M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 243.

    Google Scholar 

  4. T. Pliska, D. Fluck, P. Gunter, E. Gini, H. Melchior, L. Beckers, and C. Bichal, Appl. Phys. Lett. 72, 2364 (1998).

    Article  CAS  Google Scholar 

  5. F. Nui, B.H. Hoerman, and B.W. Wessels, J. Vac. Sci. Technol. B 18, 2146 (2000).

    Article  Google Scholar 

  6. R.L. Holman, L.M.A. Johnson, and D.P. Skinner, Opt. Eng. 26, 134 (1986).

    Google Scholar 

  7. J.A. v. Raalte, J. Opt. Soc. Am. 57, 671 (1967).

    Article  Google Scholar 

  8. H-M. Christen, D.P. Norton, L.A. Gea, and L.A. Boatner, Thin Solid Films 312, 156 (1998).

    Article  CAS  Google Scholar 

  9. K. Suzuki, W. Sakamoto, T. Yogo, and S. Hirano, Jpn. J. Appl. Phys. Part 1-Reg. Pap. Short Notes Rev. Pap. 38, 5953 (1999).

    Article  CAS  Google Scholar 

  10. S. Chattopadhyay, B.M. Nichols, J-H. Hwang, T.O. Mason, B.W. Wessels, J. Mater. Res. 17, 275 (2002).

    Article  CAS  Google Scholar 

  11. B.H. Hoerman, G.M. Ford, L.D. Kaufmann, and B.W. Wessels, Appl. Phys. Lett. 73, 2248 (1998).

    Article  CAS  Google Scholar 

  12. G.W. Farnell, I.A. Cermak, P. Silvester, and S.K. Wong, IEEE Trans. Sonics Ultrason. SU–17, 188 (1970).

    Article  Google Scholar 

  13. S. Triebwasser, Phys. Rev. 114, 63 (1959).

    Article  CAS  Google Scholar 

  14. J.D. Siegwarth and J.C. Holste, J. Appl. Phys. 47, 4791 (1976).

    Article  CAS  Google Scholar 

  15. J.K. Hulm, B.T. Matthias, and E.A. Long, Phys. Rev. 79, 885 (1950).

    Article  CAS  Google Scholar 

  16. M.D. Fontana, G. Metrat, J.L. Servoin, and F. Gervais, J. Phys. C. 16, 483 (1984).

    Article  Google Scholar 

  17. L.E. Cross, Ferroelectrics. 151, 305 (1994).

    Article  CAS  Google Scholar 

  18. D. Sommer, D. Friese, W. Kleeman, and D. Rytz, Ferroelectrics 124, 231 (1991).

    Article  CAS  Google Scholar 

  19. K. Suzuki, W. Sakamoto, T. Yogo, and S. Hirano, J. Am. Ceram. Soc. 82, 1463 (1999).

    Article  CAS  Google Scholar 

  20. W. Kleeman, F.J. Schafer, and D. Rytz, Phys. Rev. Lett. 54, 2038 (1985).

    Article  Google Scholar 

  21. R. Pattnaik and J. Toulouse, Phys. Rev. Lett. 79, 4677 (1997).

    Article  CAS  Google Scholar 

  22. U.T. Hochli, H.E. Weibel, and L.A. Boatner, Phys. Rev. Lett. 39, 1158 (1977).

    Article  Google Scholar 

  23. J.S. Speck and W. Pompe, J. Appl. Phys. 76, 466 (1994).

    Article  CAS  Google Scholar 

  24. J.S. Speck, A. Seifert, W. Pompe, and R. Ramesh, J. Appl. Phys. 76, 477 (1994).

    Article  CAS  Google Scholar 

  25. N.A. Pertsev and V.G. Koukhar, Phys. Rev. Lett. 84, 3722 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, B.M., Hoerman, B.H., Hwang, JH. et al. Phase stability of epitaxial KTaxNb1−xO3 thin films deposited by metalorganic chemical vapor deposition. Journal of Materials Research 18, 106–110 (2003). https://doi.org/10.1557/JMR.2003.0015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0015

Navigation