Skip to main content
Log in

Effect of dopant (Nb) concentration on the grain boundary electrical properties of Nb-doped barium titanate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of coarse-grained BaTiO3 specimens with different dopant (Nb) concentrations were prepared by adjusting the oxygen partial pressure during sintering. They were again heat-treated in air, and the behavior of the grain boundary electrical properties with the increase of Nb concentration was investigated under the conditions of the same microstructure and heat treatment. The interface states of the grain boundaries were estimated using the grain boundary R (resistance) and C (capacitance) values at each temperature that were obtained from impedance analysis. An increase in the interface state density at certain energy levels with increasing Nb concentration was verified experimentally. One type of interface state was observed for specimens with low Nb concentrations and another for specimens with high Nb concentrations. It is proposed that the changes in the interface state with increasing Nb concentration are related to the transition of the compensating defect mode and differences in the extent of oxygen adsorption at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Al-Allak, J. Illingsworth, A.W. Brinkman, G.J. Russel, and J. Woods, J. Appl. Phys. 64, 6477 (1988).

    Article  Google Scholar 

  2. P. Blanchart, J.F. Baumard, and P. Abelard, J. Am. Ceram. Soc. 75, 1068 (1992).

    Article  CAS  Google Scholar 

  3. R. Wernicke, Phys. Status Solidi 47, 139 (1978).

    Article  CAS  Google Scholar 

  4. M. Drofenik, J. Am. Ceram. Soc. 70, 311 (1987).

    Article  CAS  Google Scholar 

  5. S.H. Yoon, K.H. Lee, and H. Kim, J. Am. Ceram. Soc. 83, 2463 (2000).

    Article  CAS  Google Scholar 

  6. H. Ihrig and W. Puschert, J. Appl. Phys. 48, 3081 (1977).

    Article  CAS  Google Scholar 

  7. C.H. Lai and T.Y. Tseng, J. Am. Ceram. Soc. 77, 2419 (1994).

    Article  CAS  Google Scholar 

  8. S.N. Bai and T.Y. Tseng, J. Appl. Phys. 74, 695 (1993).

    Article  CAS  Google Scholar 

  9. K. Kobayashi, M. Takata, Y. Fujimura, and S. Okamoto, J. Appl. Phys. 60, 4191 (1986).

    Article  CAS  Google Scholar 

  10. D.V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  CAS  Google Scholar 

  11. Y. Ohbuchi, T. Kawahara, Y. Okamoto, and J. Morimoto, Jpn. J. Appl. Phys. Pt1., 40, 213 (2001).

    Article  CAS  Google Scholar 

  12. A.B. Alles and V.L. Burdick, J. Am. Ceram. Soc. 76, 401 (1993).

    Article  CAS  Google Scholar 

  13. D.Y. Wang and K. Umeya, J. Am. Ceram. Soc. 73, 669 (1990).

    Article  CAS  Google Scholar 

  14. D.Y. Wang and K. Umeya, J. Am. Ceram. Soc. 74, 280 (1991).

    Article  CAS  Google Scholar 

  15. B.A. Boukamp, Solid State Ionics 20, 31 (1986).

    Article  CAS  Google Scholar 

  16. O. Saburi, J. Phys. Soc. Jpn. 14, 1159 (1959).

    Article  CAS  Google Scholar 

  17. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964).

    Article  CAS  Google Scholar 

  18. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), p. 77.

    Google Scholar 

  19. K. Hayashi, T. Yamamoto, Y. Ikuhara, and T. Sakuma, J. Appl. Phys. 86, 2909 (1999).

    Article  CAS  Google Scholar 

  20. M. Kahn, J. Am. Ceram. Soc. 54, 455 (1971).

    Article  CAS  Google Scholar 

  21. J. Daniels and K.H. Härdtl, Philips. Res. Rep. 31, 489 (1976).

    CAS  Google Scholar 

  22. H. Ihrig, J. Phys. C: Solid State Phys. 9, 3469 (1976).

    Article  CAS  Google Scholar 

  23. J. Daniels, K.H. Härdtl, R. Wernicke, Philips Tech. Rev. 38, 73 (1978/1979).

    Google Scholar 

  24. J. Daniels and R. Wernicke, Philips Res. Rept. 31, 544 (1976).

    CAS  Google Scholar 

  25. Y.M. Chiang and T. Takagi, J. Am. Ceram. Soc. 73, 3286 (1990).

    Article  CAS  Google Scholar 

  26. S.B. Desu and D.A. Payne, J. Am. Ceram. Soc. 73, 3416 (1990).

    Article  CAS  Google Scholar 

  27. G.H. Jonker, in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, edited by L.M. Levinson (Am. Ceram. Soc., Columbus, OH, 1981), p. 155.

    Google Scholar 

  28. M. Kuwabara, Solid State Electron. 27, 929 (1984).

    Article  CAS  Google Scholar 

  29. K. Hayashi, T. Yamamoto, Y. Ikuhara, and T. Sakuma, J. Am. Ceram. Soc. 83, 2684 (2000).

    Article  CAS  Google Scholar 

  30. A. Yamada and Y.M. Chiang, J. Am. Ceram. Soc. 78, 909 (1995).

    Article  CAS  Google Scholar 

  31. G.H. Jonker and E.E. Havinga, Mater. Res. Bull. 17, 345 (1982).

    Article  CAS  Google Scholar 

  32. H.M. Chan, M.P. Harmer, and D.M. Smyth, J. Am. Ceram. Soc. 69, 507 (1986).

    Article  CAS  Google Scholar 

  33. J.M. Millet, R.S. Roth, L.D. Ettlinger, and H.S. Parker, J. Solid State Chem. 67, 259 (1987).

    Article  CAS  Google Scholar 

  34. G. Koschek and E. Kubalek, Phys. Status Solidi 79, 131 (1983).

    Article  CAS  Google Scholar 

  35. T.B. Wu and J.N. Lin, J. Am. Ceram. Soc. 77, 759 (1994).

    Article  CAS  Google Scholar 

  36. J. Daniels and K.H. Härdtl, Philips. Res. Rep. 31, 489 (1976).

    CAS  Google Scholar 

  37. G.V. Lewis, C.R.A. Catlow, and R.E.W. Casselton, J. Am. Ceram. Soc. 68, 555 (1985).

    Article  CAS  Google Scholar 

  38. F.D. Morrison, D.C. Sinclair, and A.R. West, J. Am. Ceram. Soc. 84, 474 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Hyun Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, SH., Kim, H. Effect of dopant (Nb) concentration on the grain boundary electrical properties of Nb-doped barium titanate. Journal of Materials Research 18, 88–96 (2003). https://doi.org/10.1557/JMR.2003.0013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0013

Navigation