Skip to main content
Log in

Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hafnium oxide thin films for use in a gate dielectric were deposited at 300 °C on p-type Si(100) substrates using a Hf[OC(CH3)3]4 precursor in the absence of oxygen by plasma-enhanced chemical vapor deposition. A comparison of films deposited in the absence and presence of oxygen indicated that oxygen was an important determinant in the electrical properties of HfO2 films, which were subsequently annealed in N2 and O2 ambients. The capacitance equivalent oxide thickness of the as-deposited Pt/HfO2/Si capacitor was approximately 17 Å and abruptly increased at an annealing temperature of 800 °C in both N2 and O2 ambients. The hysteresis of the as-deposited gate dielectric was quite small, about 40 mV, and that of the gate dielectric annealed at 800 °C in an O2 ambient was reduced to a negligible level, about 20 mV. The interface trap density of the Pt/HfO2/Si capacitors was approximately 1012 eV−1 cm−2 near the silicon midgap. The leakage current densities of the as-deposited Pt/HfO2/Si capacitor and those annealed at 800 °C in N2 and O2 were approximately 8 × 10−4, 8 × 10−5, and 3 × 10−7 A/cm2 at –1 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A.B. Devine, L. Vallier, J.L. Autran, P. Paillet, J.L. Leray, Appl. Phys. Lett. 68, 1775 (1996).

    Article  CAS  Google Scholar 

  2. O. Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata, and T. Kawai, J. Appl. Phys. 80, 388 (1996).

    Article  CAS  Google Scholar 

  3. S.A. Campbell, D.C. Gilmer, X.C. Wang, M.T. Hsieh, H.S. Kim, W.L. Gladfelter, and J. Yan, IEEE Trans. Electron Devices 44, 104 (1997).

    Article  CAS  Google Scholar 

  4. R.J. Cava and J.J. Krajewski, J. Appl. Phys. 83, 1613 (1998).

    Article  CAS  Google Scholar 

  5. G.B. Alers, R.M. Fleming, Y.H. Wong, B. Dennis, A. Pinczuk, G. Redinbo, R. Urdahl, E. Ong, Z. Hasan, Appl. Phys. Lett. 72, 1308 (1998).

    Article  CAS  Google Scholar 

  6. V. Mikhaelashvili, Y. Betzer, I. Prudnikov, M. Orenstein, D. Ritter, and G. Eisenstein, J. Appl. Phys. 84, 6747 (1998).

    Article  CAS  Google Scholar 

  7. G.D. Wilk and R.M. Wallace, Appl. Phys. Lett. 74, 2854 (1999).

    Article  CAS  Google Scholar 

  8. B.H. Lee, L. Kang, W.J. Qi, R. Nieh, Y. Jeon, K. Onishi, J.C. Lee, IEEE International Electron Devices Meeting Technical Digest (Washington, DC, 1999), p. 133.

    Google Scholar 

  9. G.D. Wilk and R.M. Wallace, Appl. Phys. Lett. 76, 112 (2000).

    Article  CAS  Google Scholar 

  10. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 87, 484 (2000).

    Article  CAS  Google Scholar 

  11. M. Balog, M. Schieber, M. Michman, and S. Patai, Thin Solid Films 41, 247 (1977).

    Article  CAS  Google Scholar 

  12. L. Kang, K. Onishi, Y. Jeon, B.H. Lee, C. Kang, W. Qi, R. Nieh, S. Gopalan, R. Choi, J.C. Lee, IEEE International Electron Devices Meeting Technical Digest (San Francisco, CA, 2000), p. 35.

    Google Scholar 

  13. B.H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. Qi, C. Kang, and J.C. Lee, IEEE International Electron Devices Meeting Technical Digest (San Francisco, CA, 2000), p. 39.

    Google Scholar 

  14. S.J. Lee, H.F. Luan, W.P. Bai, C.H. Lee, T.S. Jeon, Y. Senzaki, D. Roberts, D.L. Kwong, IEEE International Electron Devices Meeting Technical Digest (San Francisco, CA, 2000), p. 31.

    Google Scholar 

  15. M. Balog, M. Schieber, M. Michman, and S. Patai, J. Electrochem. Soc. 126, 1203 (1979).

    Article  CAS  Google Scholar 

  16. H. Zhang and R. Solanki, J. Electrochem. Soc. 148, F63 (2001).

    Article  CAS  Google Scholar 

  17. K.J. Choi, W.C. Shin, and S.G. Yoon, J. Electrochem. Soc. 149, F18 (2002).

    Article  CAS  Google Scholar 

  18. K.J. Choi, W.C. Shin, J.B. Park, and S.G. Yoon, Integr. Ferroelectr. 38, 191 (2001).

    Article  CAS  Google Scholar 

  19. E.H. Nicollian and J.R. Brews, MOS Physics and Technology (Wiley, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, KJ., Shin, WC. & Yoon, SG. Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2. Journal of Materials Research 18, 60–65 (2003). https://doi.org/10.1557/JMR.2003.0009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0009

Navigation