Skip to main content
Log in

Study of the reaction mechanism between electroless Ni–P and Sn and its effect on the crystallization of Ni–P

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The reaction mechanism between electroless Ni–P and Sn was investigated to understand the effects of Sn on solder reaction-assisted crystallization at low temperatures as well as self-crystallization of Ni–P at high temperatures. Ni3Sn4 starts to form in a solid-state reaction well before Sn melts. Heat of reaction for Ni3Sn4 was measured during the Ni–P and Sn reaction (241.2 J/g). It was found that the solder reaction not only promotes crystallization at low temperatures by forming Ni3P in the P-rich layer but also facilitates self-crystallization of Ni–P by reducing the transformation temperature and heat of crystallization. The presence of Sn reduces the self-crystallization temperature of Ni–P by about 10 °C. The heat of crystallization also decreases with an increased Sn thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Brenner and G. Riddell, J. Res. Nat. Bur. Stand. 37, 1 (1946).

    Article  Google Scholar 

  2. H. Kreye, F. Müller, K. Lang, D. Isheim, T. Hentschel, Z. Metallkd. 86, 184 (1995).

    CAS  Google Scholar 

  3. H. Kreye, H-H. Müller, and T. Petzel, Galvanotechnik 77, 561 (1986).

    CAS  Google Scholar 

  4. G. Dietz and H.D. Schneider, J. Phys, Condens. Matter 2, 2169 (1990).

    Article  CAS  Google Scholar 

  5. K.H. Hur, J.H. Jeong, and D.N. Lee, J. Mater. Sci. 25, 2573 (1990).

    Article  CAS  Google Scholar 

  6. Th. Hentschel, D. Isheim, R. Kirchheim, F. Müller, and H. Kreye, Acta Mater. 48, 933 (2000).

    Article  CAS  Google Scholar 

  7. S. Wiegele, P. Thompson, R. Lee, and E. Ramsland, in Proceedings of IEEE Electronic Component and Technology Conference, (1998), p. 861.

    Google Scholar 

  8. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  9. F. Stepniak, Adv. Electron. Packaging 1, 353 (1997).

    Google Scholar 

  10. K.C. Hung, Y.C. Chan, C.W. Tang, and H.C. Ong, J. Mater. Res. 15, 2534 (2000).

    Article  CAS  Google Scholar 

  11. P.L. Liu, Z. Xu, and J.K. Shang, Metall. Mater. Trans. A 31A, 2857 (2000).

    Article  CAS  Google Scholar 

  12. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  13. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  14. S.K. Kang and V. Ramachandran, Scipta Metall. 14, 421 (1980).

    Article  CAS  Google Scholar 

  15. C.Y. Lee and K.L. Lin, Thin Solid Films 249, 201 (1994).

    Article  CAS  Google Scholar 

  16. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer, New York, 1977).

    Book  Google Scholar 

  17. S.H. Park and D.N. Lee, J. Mater. Sci. 23, 1643 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, Y.C., Yu, J., Kang, S.K. et al. Study of the reaction mechanism between electroless Ni–P and Sn and its effect on the crystallization of Ni–P. Journal of Materials Research 18, 4–7 (2003). https://doi.org/10.1557/JMR.2003.0002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0002

Navigation