Skip to main content
Log in

Superhard B–C–N materials synthesized in nanostructured bulks

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report here the high-pressure synthesis of well-sintered millimeter-sized bulks of superhard BC2N and BC4N materials in the form of a nanocrystalline composite with diamond-like amorphous carbon grain boundaries. The nanostructured superhard B–C–N material bulks were synthesized under high P–T conditions from amorphous phases of the ball-milled molar mixtures. The synthetic B–C–N samples were characterized by synchrotron x-ray diffraction, high-resolution transmission electron microscope, electron energy-loss spectra, and indentation hardness measurements. These new high-pressure phases of B–C–N compound have extreme hardnesses, second only to diamond. Comparative studies of the high PT synthetic products of BC2N, BC4N, and segregated phases of diamond + cBN composite confirm the existence of the single B–C–N ternary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sun, S. Jhi, D. Roundy, M.L. Cohen, and S.G. Louie, Phys. Rev. B 64, 094108 (2001).

    Article  Google Scholar 

  2. Y. Tateyama, T. Ogitsu, K. Kusakabe, and S. Tsuneyuki, Phys. Rev. B 55, 10161 (1997).

    Article  Google Scholar 

  3. H.T. Hall and L.A. Compton, Inorg. Chem. 4, 1213 (1965).

    Article  CAS  Google Scholar 

  4. R.H. Wentorf, R.C. DeVries, and F.P. Bundy, Science 208, 873 (1980).

    Article  CAS  Google Scholar 

  5. A.Y. Liu and M.L. Cohen, Science 245, 841 (1989).

    Article  CAS  Google Scholar 

  6. D.M. Teter and R.J. Hemley, Science 271, 53 (1996).

    Article  CAS  Google Scholar 

  7. H. Hubert, B. Devouard, L.A.J. Garvie, M. O’Keeffe, P.R. Buseck, W.T. Petuskey, and P.F. McMillan, Nature 391, 376 (1998).

    Article  Google Scholar 

  8. D. He, M. Akaishi, B.L. Scott, and Y. Zhao, J. Mater. Res. 17, 284 (2002).

    Article  CAS  Google Scholar 

  9. F.P. Bundy, H.T. Hall, H.M. Strong, and R.H. Wentorf Jr., Nature 176, 51 (1955).

    Article  CAS  Google Scholar 

  10. R.H. Wentorf Jr., J. Chem. Phys. 26, 956 (1957).

    Article  CAS  Google Scholar 

  11. S. Veprek, in Handbook of Ceramic Hard Materials, edited by R. Riedel (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000), pp. 104–139.

    Book  Google Scholar 

  12. A.R. Badzian, Mater. Res. Bull. 16, 1385 (1981).

    Article  CAS  Google Scholar 

  13. S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater. 6, 2246 (1994).

    Article  CAS  Google Scholar 

  14. E. Knittle, R.B. Kaner, R. Jeanloz, and M.L. Cohen, Phvs. Rev. B 51, 12149 (1995).

    Article  CAS  Google Scholar 

  15. T. Komatsu, M. Samedima, T. Awano, Y. Kakadate, and S.J. Fujiwara, Mater. Process. Technol. 85, 69 (1999).

    Article  Google Scholar 

  16. V.L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D.C. Rubie, Appl. Phys. Lett. 78, 1385 (2001).

    Article  CAS  Google Scholar 

  17. J. Huang, Y.T. Zhu, and H. Mori, J. Mater. Res. 16, 1178 (2001).

    Article  CAS  Google Scholar 

  18. S. Veprek, J. Vac. Sci. Technol., A 17, 2401 (1999).

    Article  CAS  Google Scholar 

  19. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1989).

    Google Scholar 

  20. A. Kelly and N.H. MacMillan, Strong Solids (Clarendon, Oxford, U.K., 1986).

    Google Scholar 

  21. E.A. Ekimov, A.G. Gavriliuk, Z. Palosz, S. Gierlotka, P. Dluzewski, E. Tatianin, Y. Kluged, A.M. Naletov, and A. Presz, Appl. Phys. Lett. 77, 954 (2000).

    Article  CAS  Google Scholar 

  22. W. Utsumi, S. Nakano, K. Kimoto, T. Okada, M. Isshiki, T. Taniguchi, K. Funakoshi, M. Akaishi, and O. Shimomura, Proceedings of AIRAPT-18, Beijing, China, 2001 (2001), p. 186.

    Google Scholar 

  23. S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater. 6, 2246 (1994).

    Article  CAS  Google Scholar 

  24. M. Mattesini and S.F. Matar, Comput. Mater. Sci. 20, 107 (2001).

    Article  CAS  Google Scholar 

  25. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  CAS  Google Scholar 

  26. Ph. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, and M. Rühle, Chem. Phys. Lett. 260, 465 (1996).

    Article  CAS  Google Scholar 

  27. M. Wibbelt, H. Kohl, and Ph. Kohler-Redlich, Phys. Rev. B 59, 11739 (1999).

    Article  CAS  Google Scholar 

  28. L.A.J. Garvie, H. Hubert, W.T. Petuskey, P.F. McMillan, and P.R. Buseck, J. Solid State Chem. 133, 365 (1997).

    Article  CAS  Google Scholar 

  29. J.S. Lannin, V.I. Merkulov, C.H. Munro, S.A. Asher, V.S. Veerasamy, and W.I. Milne, Phys. Rev. Lett. 78, 4869 (1997).

    Article  Google Scholar 

  30. M.P. Siegal, D.R. Tallant, L.J. Martinez-Miranda, J.C. Barbour, R.L. Simpson, and D.L. Overmyer, Phys. Rev. B 61, 10451 (2000).

    Article  CAS  Google Scholar 

  31. J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen, Nature 391, 561 (1998).

    Article  Google Scholar 

  32. D. He, Q. Zhao, W.H. Wang, R.Z. Che, J. Liu, X.J. Lou, and W.K. Wang, J. Non-Cryst. Solids 297, 84 (2002).

    Article  CAS  Google Scholar 

  33. T. Taniguchi, M. Ahaishi, and S. Yamaoka, J. Mater. Res. 14, 162 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., He, D.W., Daemen, L.L. et al. Superhard B–C–N materials synthesized in nanostructured bulks. Journal of Materials Research 17, 3139–3145 (2002). https://doi.org/10.1557/JMR.2002.0454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0454

Navigation