Skip to main content
Log in

Perovskite crystallization of sol-gel processed (Pb,La0.06,Gd0.02)(Zr0.65,Ti0.35)O3 thin films: Dielectric, ferroelectric and optical properties

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferroelectric lead lanthanum gadolinium zirconium titanate (PLGZT) thin films were prepared by the sol-gel spin coating technique. Three-step preannealing heat treatment was employed to prepare crack-free films. Various types of substrates, and the effects of the seed layer and annealing temperature on the perovskite crystallization were studied. Phase-pure perovskite crystallization was obtained by annealing the films on PbTiO3/Pt/Ti/Si substrates at 700 °C for 30 min. The Auger electron spectroscopy depth profile showed uniform elemental distribution along the thickness except the surface and interface regions. Dielectric constant and loss tangent at 10 kHz were 1000 and 0.06, respectively. Remanent polarization (Pr) and coercive field (Ec) were 11.8 μC/cm2 and 71 kV/cm, respectively. The direct band gap energy was 3.55 eV for the amorphous films. The refractive index and extinction coefficient at 610 nm for amorphous PLGZT films were 2.14 and 0.0028, respectively. The dispersion of the refractive index was interpreted in terms of a single electronic oscillator at 6.06 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  CAS  Google Scholar 

  2. R. Ramesh, S. Aggarwal, and O. Auciello, Mater. Sci. Eng. 32, 191 (2001).

    Article  Google Scholar 

  3. Y. Xu and J.D. Mackenzie, Integrated Ferroelectrics 1, 17 (1992).

    Article  CAS  Google Scholar 

  4. R. Thomas and D.C. Dube, Jpn. J. Appl. Phys. 36, 7337 (1997).

    Article  CAS  Google Scholar 

  5. D. Zhu, Q. Li, T. Lai, D. Mo, Y. Xu, and J.D. Mackenzie, Thin Solid Films 313, 210 (1998).

    Article  Google Scholar 

  6. J.S. Lee, C.J. Kim, D.S. Yoon, C.G. Choi, J.M. Kim, and K. No, Jpn. J. Appl. Phys. 33, 260 (1994).

    Article  CAS  Google Scholar 

  7. N. Tohge, S. Takahashi, and T. Minami, J. Am. Ceram. Soc. 74, 67 (1991).

    Article  CAS  Google Scholar 

  8. B. Malic, J. Sol-Gel Sci. Technol. 13, 865 (1998).

    Article  Google Scholar 

  9. R.W. West and J. Xu, Ferroelectrics 93, 21 (1989).

    Article  Google Scholar 

  10. A.Z. Simoes, A.H.M. Gonzalez, M.A. Zaghete, M. Cilense, J.A. Varela, and B.D. Stojanovic, Appl. Surf. Sci. 172, 68 (2001).

    Article  CAS  Google Scholar 

  11. C.D.E. Lakeman, J-F. Campion, and D.A. Payne, in Ferroelectric Thin Films, edited by A.S. Bhalla and K.M. Nair Ceram. Trans. 25 (The American Ceramic Society, Westerville, OH), p. 413.

  12. W-D. Yang, Ceram. Int. 27, 373 (2001).

    Article  CAS  Google Scholar 

  13. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Components (Wiley, New York, 1986).

    Google Scholar 

  14. F. Wang, Y. Wu, Z. Jiang, and L. Zhao, Mater. Chem. Phys. 77, 10 (2002).

    Article  Google Scholar 

  15. J-S. Shin and W-J. Lee, Jpn. J. Appl. Phys. 36, 6909 (1997).

    Article  CAS  Google Scholar 

  16. S. Mochizuki, T. Mihara, and T. Ishida, Ferroelectrics 225, 237 (1999).

    Article  Google Scholar 

  17. R. Thomas, S. Mochizuki, T. Mihara, and T. Ishida, Mater. Sci. Eng. B 95, 36 (2002).

    Article  Google Scholar 

  18. S.S. Dana, K.F. Etzold, and J. Clabes, J. Appl. Phys. 69, 4398 (1991).

    Article  CAS  Google Scholar 

  19. R. Thomas, V.K. Varadan, S. Komerneni, and D.C. Dube, J. Appl. Phys. 90, 1480 (2001).

    Article  CAS  Google Scholar 

  20. K. Tanaka, Y. Higuma, K. Yokoyama, and Y. Hamakawa, Jpn. J. Appl. Phys. 15, 1381 (1976).

    Article  CAS  Google Scholar 

  21. D.X. Lu, E.Y.B. Pun, E.M.W. Wong, P.S. Chung, and Z.Y. Lee, IEEE Trans. Ultra. Ferro. Freq. Con. 44, 675 (1997).

    Article  Google Scholar 

  22. R. Thomas, S. Mochizuki, T. Mihara, and T. Ishida, Thin Soild Films 413, 65 (2002).

    Article  CAS  Google Scholar 

  23. R. Thomas, and D.C. Dube, Jpn J. Appl. Phys. 39, 1771 (2000).

    Article  CAS  Google Scholar 

  24. J.C. Manifacier, J. Gasiot, and J.P. Fillard, J. Phys. E. Sci. Instr. 9, 1002 (1976).

    Article  CAS  Google Scholar 

  25. H. Li, Y. Zhang, J. Wen, S. Yang, D. Mo, C-H. Cheng, Y. Xu, and J.D. Mackenzie, Jpn. J. Appl. Phys. 39, 1180 (2000).

    Article  CAS  Google Scholar 

  26. M. Didominico, Jr., and S.H. Wemple, J. Appl. Phys. 40, 720 (1969).

    Article  Google Scholar 

  27. G.H. Heartling, Ferroelectrics 75, 25 (1987).

    Article  Google Scholar 

  28. R. Thomas, D.C. Dube, M.N. Kamalasanan, and S. Chandra, Thin Solid Films 346, 212 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Mochizuki, S., Mihara, T. et al. Perovskite crystallization of sol-gel processed (Pb,La0.06,Gd0.02)(Zr0.65,Ti0.35)O3 thin films: Dielectric, ferroelectric and optical properties. Journal of Materials Research 17, 2652–2659 (2002). https://doi.org/10.1557/JMR.2002.0385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0385

Navigation