Skip to main content
Log in

Microwave dielectric properties of RETiTaO6 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) ceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microwave dielectric ceramics based on RETiTaO6 (RE = La, Cc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) were prepared using a conventional solid-state ceramic route. The structure and microstructure of the samples were analyzed using x-ray diffraction and scanning electron microscopy techniques. The sintered samples were characterized in the microwave frequency region. The ceramics based on Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, which crystallize in orthorhombic aeschynite structure, had a relatively high dielectric constant and positive τf while those based on Ho, Er, and Yb, with orthorhombic euxenite structure, had a low dielectric constant and negative τf. The RETiTaO6 ceramics had a high-quality factor. The dielectric constant and unit cell volume of the ceramics increased with an increase in ionic radius of the rare-earth ions, but density decreased with it. The value of τf increased with an increase in RE ionic radii, and a change in the sign of τf occurred when the ionic radius was between 0.90 and 0.92 Å. The results indicated that the boundary of the aeschynite to euxenite morphotropic phase change lay between DyTiTaO6 and HoTiTaO6. Low-loss ceramics like ErTiTaO6r = 20.6, Quxf = 85,500), EuTiTaO6 (r = 41.3, Quxf = 59,500), and YtiTaO6r = 22.1, Quxf = 51,400) are potential candidates for dielectric resonator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wersing, Electronic Ceramics, edited by B.C.H. Steele, (Elsevier, New York, 1991), pp. 67–119.

    Google Scholar 

  2. J.K. Plourde, D.F. Linn, H.M. O’Bryan, Jr., and J. Thomas, Jr., J. Am. Ceram. Soc. 58, 418 (1975).

    Article  CAS  Google Scholar 

  3. S. Nomura, K. Toyama, and K. Tanaka, Jpn. J. Appl. Phys. 21, L624 (1982).

    Article  Google Scholar 

  4. G. Wolfram and H.E. Goebel, Mater. Res. Bull. 16, 1455 (1981).

    Article  CAS  Google Scholar 

  5. K. Wakino, T. Nishikawa, H. Tamura, and T. Sudo, Microwave J. (1987), p. 133.

  6. H. Sreemoolanathan, M.T. Sebastian, and P. Mohanan, Mater. Res. Bull. 30, 653 (1995).

    Article  Google Scholar 

  7. M.T. Sebastian, J. Mater. Sci. Mater. Electron. 10, 475 (1999).

    Article  CAS  Google Scholar 

  8. V.B. Aleksandrov, Dokl. Akad. Nauk. SSSR 142, 181 (1963).

    Google Scholar 

  9. I. Komkov, Dokl. Acad. Nauk. SSSR 148, 1182 (1963).

    CAS  Google Scholar 

  10. G. Blasse, J. Inorg. Nucl. Chem. 28, 1122 (1966).

    Article  CAS  Google Scholar 

  11. V.V. Kazantsev, E.I. Krylov, A.K. Borisov, and A.I. Chupin, Russian. J. Inorg. Chem. 19, 506 (1974).

    Google Scholar 

  12. C.E. Holcombe, M.K. Morrow, D.D. Smith, and D.A. Carpenter, Survey Study of Low Expending, High Melting, Mixed Oxides, Y-1913 (Union Carbide Corporation, Nuclear Division, Oak Ridge, TN, 1974).

    Book  Google Scholar 

  13. C.E. Holcombe, J. Mater. Sci. Lett. 14, 2255 (1974).

    Google Scholar 

  14. M. Maeda, T. Yamamura, and T. Ikeda, Jpn. J. Appl. Phys. 26, 76 (1987).

    Article  CAS  Google Scholar 

  15. M.T. Sebastian, S. Solomon, R. Ratheesh, J. George, and P. Mohanan, J. Am. Ceram. Soc. 84, 1487 (2001).

    Article  CAS  Google Scholar 

  16. S. Solomon, M. Kumar, K.P. Surendran, M.T. Sebastian, and P. Mohanan, Mater. Chem. Phys. 67, 291 (2001).

    Article  CAS  Google Scholar 

  17. K.P. Surendran, M.R. Varma, M.T. Sebastian, and P. Mohanan, J. Am. Ceram, Soc. (in press).

  18. S. Solomon, Ph.D. Thesis, University of Kerala (1999).

  19. B.W. Hakki and P.D. Coleman, IRE Trans. Microwave Theory Tech. MTT-8, 402 (1960).

    Article  Google Scholar 

  20. W.E. Courtney, IEEE Trans. on Microwave Theory Tech. MTT-18, 476 (1970).

    Article  Google Scholar 

  21. J. Krupka, K. Derzakowski, B. Riddle, and J. Baker-Jarvis, Meas. Sci. Technol. 9, 1751 (1998).

    Article  CAS  Google Scholar 

  22. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    Article  CAS  Google Scholar 

  23. ICDD File Card No. 28-1289 (International Center for Diffraction Data, PA).

  24. ICDD File Card No. 27-1157 (International Center for Diffraction Data, PA).

  25. ICDD File Card No. 32-1452 (International Center for Diffraction Data, PA).

  26. ICDD File Card No. 32-28 (International Center for Diffraction Data, PA).

  27. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997).

    Article  CAS  Google Scholar 

  28. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

  29. A.I. Kingon, J.P. Maria, and S.K. Streiffer, Nature 406, 1032 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mailadil Thomas Sebastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surendran, K.P., Solomon, S., Varma, M.R. et al. Microwave dielectric properties of RETiTaO6 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) ceramics. Journal of Materials Research 17, 2561–2566 (2002). https://doi.org/10.1557/JMR.2002.0372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0372

Navigation