Skip to main content
Log in

Microstructure and microstructural evolution in BaTiO3 films fabricated using the precursor method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pulsed laser deposition of TiO2 and BaF2 layers at room temperature and subsequent annealing in flowing oxygen were used to form homogeneous epitaxial BaTiO3 films on LaAlO3. This oxide film synthesis method, known as the precursor technique, is frequently used for making combinatorial libraries. In this paper, we investigated the microstructures of the films at different stages of annealing using cross-sectional transmission electron microscopy, high-resolution imaging, and electron energy loss spectroscopy. It was shown that epitaxial BaTiO3 thin films with large grains could be formed on a LaAlO3 substrate. Their formation process consists of the following stages: At 200 °C, the BaF2 layer is partially oxidized. At 400 °C, the amorphous TiO2 layer crystallizes, further transformation of BaF2 into BaO takes place, and interdiffusion begins. At 700 °C, the formation of a polycrystalline structure with different Ba–Ti oxides occurs, epitaxial BaTiO3 grains nucleate on the film/substrate interface, and significant interdiffusion takes place. Finally, at 900 °C, the interdiffusion is completed, and the epitaxial BaTiO3 grains coalesce and grow. The presence of nonepitaxial polycrystalline regions in fully annealed films can be explained as the following: (i) stoichiometric transient regions not yet consumed by recrystallization of BaTiO3; (ii) nonstoichiometric regions resulting from inhomogeneous deposition of BaF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X-D. Xiang, X. Sun, G. Briceno, Y. Lou, K-A. Wang, H. Chang, W.G. Wallace-Freedman, S-W. Chen, and P.G. Schultz, Science 268, 1738 (1995); G. Briceno, H. Chang, X. Sun, P.G. Schultz, and X-D. Xiang, Science 270, 273 (1995); X-D. Xiang and P.G. Schultz, Physica C 282–287, 428 (1997).

    Article  CAS  Google Scholar 

  2. H. Koinuma, Solid State Ionics 108, 1 (1998).

    Article  CAS  Google Scholar 

  3. H. Chang, I. Takeuchi, and X-D. Xiang, Appl. Phys. Lett. 74, 1165 (1999).

    Article  CAS  Google Scholar 

  4. I. Takeuchi, H. Chang, C. Gao, P.G. Schultz, X-D. Xiang, R.P. Sharma, M.J. Downes, and T. Venkatesan, Appl. Phys. Lett. 73, 894 (1998).

    Article  CAS  Google Scholar 

  5. J. Wang, Y. Yoo, C. Gao, I. Takeuchi, X. Sun, H. Chang, X-D. Xiang, and P.G. Schultz, Science 279, 1712 (1998).

    Article  CAS  Google Scholar 

  6. H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P.G. Schultz, X-D. Xiang, R.P. Sharma, M. Downes, and T. Venkatesan, Appl. Phys. Lett. 72, 2185 (1998).

    Article  CAS  Google Scholar 

  7. A.F. Wells, Structural Inorganic Chemistry, 5th ed. (Clarendon Press, Oxford, U.K., 1984).

    Google Scholar 

  8. T. Hara, Tetsu to Do 76, 352 (1990) (in Japanese).

    CAS  Google Scholar 

  9. R.S. Roth, C.J. Rawn, C.G. Lindsay, and W. Wong-Ng, J. Solid State Chem. 104, 99 (1993).

    Article  CAS  Google Scholar 

  10. J.M. Howe, Interfaces in Materials (John Wiley & Sons, New York, 1997).

    Google Scholar 

  11. I. Takeuchi, K. Chang, L.A. Bendersky, H. Chang, X-D. Xiang, E.A. Stach, and C-Y. Song, J. Appl. Phys. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendersky, L.A., Lu, C.J., Scott, J.H. et al. Microstructure and microstructural evolution in BaTiO3 films fabricated using the precursor method. Journal of Materials Research 17, 2499–2506 (2002). https://doi.org/10.1557/JMR.2002.0364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0364

Navigation