Skip to main content
Log in

Mechanically induced solid-state reaction for synthesizing glassy Co75Ti25 soft magnet alloy powders with a wide supercooled liquid region

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A single phase of glassy Co75Ti25 alloy powders was synthesized by high-energy ball milling the elemental powders at room temperature, using the mechanical alloying method. The final product of the glassy alloy, which is obtained after ball milling for 86 ks, exhibits soft magnetic properties with polarization and coercivity values of 0.67 T and 2.98 kA/m, respectively. This binary glassy alloy, in which its glass transition temperature (Tg) lies at a rather high temperature (833 K), transforms into face-centered-cubic Co3Ti (ordered phase) at 889 K through a single sharp exothermic reaction with an enthalpy change of crystallization (ΔHx) of −2.35 kJ/mol. The supercooled liquid region before crystallization ΔTx of the synthesized glassy powders shows an extraordinary high value (56 K) for a metallic binary system. The reduced glass transition temperature [ratio between Tg and liquidus temperatures, Tl (Tg/Tl)] was 0.56. We also demonstrated postannealing experiments of the mechanically deformed Co/Ti multilayered composite powders. The results show that annealing of the powders at 710 K leads to the formation of a glassy phase (thermally enhanced glass formation reaction). Its heat formation was measured directly and found to be −0.56 kJ/mol. The similarity in the crystallization and magnetization behaviors between the two classes of as-annealed and as-mechanically alloyed glassy powders implies the formation of the same glassy phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, Appl. Phys. Lett. 43, 1017 (1983).

    Article  CAS  Google Scholar 

  2. M. Sherif El-Eskandarany, K. Aoki, and K. Suzuki, J. Less-Common Met. 167, 113 (1990).

    Article  CAS  Google Scholar 

  3. M. Sherif El-Eskandarany, K. Sumiyama, K. Aoki, and K. Suzuki, J. Mater. Res. 7, 888 (1992).

    Article  CAS  Google Scholar 

  4. M. Sherif El-Eskandarany, K. Sumiyama, and K. Suzuki, J. Mater. Res. 10, 659 (1995).

    Article  Google Scholar 

  5. M. Sherif El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, 1st ed. (William Andrew Publishing, New York, 2001), pp. 142–173.

    Google Scholar 

  6. A. Inoue, K. Matsuki, and T. Masumoto, Mater. Trans., JIM 31, 148 (1990).

    Article  CAS  Google Scholar 

  7. M. Sherif El-Eskandarany and A. Inoue, Metall. Mater. Trans. A. 33A, 135 (2002).

    Article  CAS  Google Scholar 

  8. M. Sherif El-Eskandarany and A. Inoue, J. Non-Cryst. Solids (2002, in press).

  9. M. Sherif El-Eskandarany and A. Inoue, Metall. Mater. Trans. A. 33A, 2145 (2002).

    Article  CAS  Google Scholar 

  10. A. Inoue, in Bulk Amorphous Alloys: Practical Characteristics and Applications, edited by M. Magini and F.H. Wöhlbier (Trans Tech Publications, Vetikon-Zuerich, Switzerland, 1999), pp. 140–141.

    Google Scholar 

  11. J. Gottschall, Mater. Trans., JIM 42, 548 (2001).

    Article  CAS  Google Scholar 

  12. A. Inoue, in Amorphous and Nanocrystalline Materials; Preparation, Properties and Applications, 1st ed., edited by A. Inoue and K. Hashimoto (Springer Publishing, Berlin, Germany, 2001), pp. 47–48.

    Google Scholar 

  13. C. Fan and A. Inoue, Mater. Trans., JIM 38, 1040 (1997).

    Article  CAS  Google Scholar 

  14. R.B. Schwarz and C.C. Koch, Appl. Phys. Lett. 49, 146 (1986).

    Article  CAS  Google Scholar 

  15. R.B. Schwarz and R.R. Petrich, J. Less-Common Met. 140, 171 (1988).

    Article  CAS  Google Scholar 

  16. M. Sherif El-Eskandarany, K. Aoki, and K. Suzuki, Appl. Phys. Lett. 60, 1562 (1992).

    Article  CAS  Google Scholar 

  17. M. Sherif El-Eskandarany, K. Aoki, and K. Suzuki, J. Appl. Phys. 71, 2924 (1992).

    Article  CAS  Google Scholar 

  18. M. Sherif El-Eskandarany, K. Aoki, and K. Suzuki, J. Appl. Phys. 72, 2665 (1992).

    Article  CAS  Google Scholar 

  19. M. Sherif El-Eskandarany, Metall. Mater. Trans. 27A, 3267 (1996).

    Article  CAS  Google Scholar 

  20. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, Appl. Phys. Lett. 70, 1679 (1997).

    Article  CAS  Google Scholar 

  21. M. Sherif El-Eskandarany, K. Sumiyama, and K. Suzuki, Acta Mater. 45, 1175 (1997).

    Article  CAS  Google Scholar 

  22. M. Sherif El-Eskandarany, J. Alloys Compd. 284, 295 (1999).

    Article  Google Scholar 

  23. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, Acta Mater. 50, 1113 (2002).

    Article  Google Scholar 

  24. T. Mizushima, A. Makino, and A. Inoue, J. Appl. Phys. 83, 6329 (1998).

    Article  CAS  Google Scholar 

  25. A. Inoue, T. Zhang, T. Itoi, and A. Takeuchi, Mater. Trans., JIM 38, 359 (1997).

    Article  CAS  Google Scholar 

  26. B. Shen, H. Kimura, A. Inoue, and T. Mizushima, Mater. Trans., JIM 42, 660 (2001).

    Article  CAS  Google Scholar 

  27. H. Koshiba and A. Inoue, Mater. Trans., JIM 42, 2572 (2001).

    Article  CAS  Google Scholar 

  28. Binary Alloy Phase Diagrams, 2nd ed., edited by T.B. Massalski (ASM International, Materials Park, OH, 1992), Vol. 2, p. 1251.

  29. A. Inoue, K. Kobayashi, C. Suryanarayana, and T. Masumoto, Scr. Metall. 14, 119 (1980).

    Article  CAS  Google Scholar 

  30. JADE card No. 23-0938.

  31. Binary Alloy Phase Diagrams, 2nd ed., edited by T.B. Massalaki (ASM International, Materials Park, OH, 1992), Vol. 2, p. 1265.

  32. K.H.J. Buschow, J. Less-Common Met. 85, 221 (1982).

    Article  CAS  Google Scholar 

  33. R.B. Schwarz and W.L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

    Article  CAS  Google Scholar 

  34. B.M. Clements, W.L. Johnson, and R.B. Schwarz, J. Non-Cryst. Solids 61/62, 817 (1984).

    Article  Google Scholar 

  35. E.J. Cotts, W.J. Meng, and W.L. Johnson, Phys. Rev. Lett. 57, 2295 (1986).

    Article  CAS  Google Scholar 

  36. M. Sherif El-Eskandarany and A. Inoue, Mater. Trans., JIM 43, 770 (2002).

    Article  CAS  Google Scholar 

  37. A.E. Ermakov, E.E. Yurchikov, and V.A. Barinov, Phys. Met. Metall. 52, 50 (1981).

    Google Scholar 

  38. A.W. Weeber, H. Bakker, and F.R. Boer, Europhys. Lett. 2, 445 (1986).

    Article  CAS  Google Scholar 

  39. F.R. de Boer, R. Boom, W.C.M. Mattens, A. Miedema, and A.K. Niessen, Cohesion in Metals-Transition Metal Alloys (North-Holland, Amsterdam, The Netherlands, 1988), p. 266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sherif El-Eskandarany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Eskandarany, M.S., Zhang, W. & Inoue, A. Mechanically induced solid-state reaction for synthesizing glassy Co75Ti25 soft magnet alloy powders with a wide supercooled liquid region. Journal of Materials Research 17, 2447–2456 (2002). https://doi.org/10.1557/JMR.2002.0357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0357

Navigation