Skip to main content
Log in

Disorientations in dislocation structures: Formation and spatial correlation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

During plastic deformation, dislocation boundaries are formed and orientation differences across them arise. Two different causes lead to the formation of two kinds of deformation-induced boundaries: a statistical trapping of dislocations in incidental dislocation boundaries and a difference in the activation of slip systems on both sides of geometrically necessary boundaries. On the basis of these mechanisms, the occurrence of disorientations across both types of dislocation boundaries is modeled by dislocation dynamics. The resulting evolution of the disorientation angles with strain is in good agreement with experimental observations. The theoretically obtained distribution functions for the disorientation angles describe the experimental findings well and explain their scaling behavior. The model also predicts correlations between disorientations in neighboring boundaries, and evidence for their existence is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Liu and N. Hansen, Scr. Metall. Mater. 32, 1289 (1995).

    Article  CAS  Google Scholar 

  2. Q. Liu and N. Hansen, Phys. Status Solidi A 149, 187 (1995).

    Article  CAS  Google Scholar 

  3. D. Kuhlmann-Wilsdorf and N. Hansen, Scr. Metall. Mater. 25, 1557 (1991).

    Article  CAS  Google Scholar 

  4. D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen, Acta Mater. 45, 105 (1997).

    Article  CAS  Google Scholar 

  5. W. Pantleon, Scr. Mater. 35, 511 (1996).

    Article  CAS  Google Scholar 

  6. D.A. Hughes, D.C. Chrzan, Q. Liu, and N. Hansen, Phys. Rev. 81, 4664 (1998).

    CAS  Google Scholar 

  7. U.F. Kocks and H. Chandra, Acta Metall. 30, 695 (1982).

    Article  CAS  Google Scholar 

  8. Q. Liu, D. Juul Jensen, and N. Hansen, Acta Mater. 46, 5819 (1998).

    Article  CAS  Google Scholar 

  9. J.A. Wert, Q. Liu, and N. Hansen, Acta Mater. 43, 4153 (1995).

    Article  CAS  Google Scholar 

  10. D. Kuhlmann-Wilsdorf, Phys. Status Solidi A 149, 255 (1995).

    Google Scholar 

  11. Y. Kawasaki and T. Takeuchi, Scr. Metall. 14, 183 (1980).

    Article  CAS  Google Scholar 

  12. E.V. Kozlov, N.A. Koneva, L.A. Teplyakova, D. Lychagin, and L.I. Trishkina, Mater. Sci. Eng. A 319–321, 261 (2001).

    Article  Google Scholar 

  13. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  CAS  Google Scholar 

  14. W. Pantleon, Act Mater. 46, 451 (1998).

    Article  CAS  Google Scholar 

  15. F.R.N. Nabarro, Scr. Metall. Mater. 30, 1085 (1994).

    Article  CAS  Google Scholar 

  16. W. Pantleon, in Proc. 20th Intern. Risø Symp.: Deformation-Induced Microstructures: Analysis and Relation to Properties, edited by J.B. Bilde-Sørensen, J.V. Carstensen, N. Hansen, D. Juul Jensen, T. Leffers, W. Pantleon, O.B. Pedersen, and G. Winther (Risø National Laboratory, Roskilde, Denmark, 1999), p. 123.

    Google Scholar 

  17. W. Pantleon, Mater. Sci. Eng. A 319–321, 211 (2001).

    Article  Google Scholar 

  18. R. Sedlacek, J. Kratochvil, and W. Blum, Phys. Status Solidi A 186, 1 (2001).

    Article  CAS  Google Scholar 

  19. M.J. Marcinowski, in Fundamental Aspects of Dislocation Theory, edited by J.A. Simmons, R. de Wit, and R. Bullough (Nat. Bur. Stand. (U.S.) Spec. Publ. 317, Washington, DC, 1970), Vol. 1, p. 531.

  20. H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer-Verlag, Berlin, Germany, 1989).

    Book  Google Scholar 

  21. M.A. Miodownik, P. Smereka, D.J. Srolovitz, and E.A. Holm, Proc. R. Soc. London A 457, 1807 (2001).

    Article  Google Scholar 

  22. W. Pantleon, Mater. Sci. Eng. A 234–236, 567 (1997).

    Article  Google Scholar 

  23. W. Pantleon and N. Hansen, Acta Mater. 49, 1479 (2001).

    Article  CAS  Google Scholar 

  24. H. Schaeben, J. Appl. Crystallogr. 26, 112 (1993).

    Article  Google Scholar 

  25. D.P. Mika and P.R. Dawson, Acta Mater. 47, 1355 (1999).

    Article  CAS  Google Scholar 

  26. M. Zaiser, Mater. Sci. Eng., A 309–310, 304 (2001).

    Article  Google Scholar 

  27. W. Pantleon and D. Stoyan, Acta Mater. 48, 3005 (2000); 48, 4179 (E) (2000).

    Article  CAS  Google Scholar 

  28. D. Juul Jensen, Ultramicroscopy 67, 25 (1997).

    Article  CAS  Google Scholar 

  29. W. Pantleon, in Proc. 21th Intern. Risø Symp.: Recrystallization–Fundamental Aspects and Relations to Deformation Microstructure, edited by N. Hansen, X. Huang, D. Juul Jensen, E.M. Lauridsen, T. Leffers, W. Pantleon, T.J. Sabin, and J.A. Wert (Risø National Laboratory, Roskilde, Denmark, 2000), p. 497.

    Google Scholar 

  30. W. Pantleon and N. Hansen, Mater. Sci. Eng., A 309–310, 246 (2001).

    Article  Google Scholar 

  31. J. Hjelen, R. Ørsund, E. Hoel, P. Runde, T. Furu, and E. Nes, Textures Microstruct. 20, 29 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantleon, W. Disorientations in dislocation structures: Formation and spatial correlation. Journal of Materials Research 17, 2433–2441 (2002). https://doi.org/10.1557/JMR.2002.0355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0355

Navigation