Skip to main content
Log in

Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2003

This article has been updated

Abstract

Fiber textured Sr0.53Ba0.47Nb2O6 ceramics were reactively sintered to ≥95% of the theoretical density from a mixture of SrNb2O6 and BaNb2O6 powders. Texture in 〈001〉 was obtained by templated grain growth on 〈001〉-oriented acicular KSr2Nb5O15 template particles. The most highly textured ceramics had a peak dielectric constant of 23,600 (at Tc = 128 °C), a remanent polarization (Pr) of 20.3 µC/cm2, a saturation polarization (Psat) of 24 µC/cm2 (69–96% of single crystal), and a piezoelectric charge coefficient (d33) of 84 pC/N (76–93% of single crystal). A model, correlating polarization with grain orientation, predicts that Pr increases sharply when a percolating grain network forms to transfer charge between elongated grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. K. Shoji and Y. Uehara, Jpn. J. Appl. Phys. 30, 2315 (1991).

    Article  CAS  Google Scholar 

  2. K. Nagata, Y. Yamamoto, H. Igarashi, and K. Okazaki, Ferroelectrics 38, 853 (1981).

    Article  CAS  Google Scholar 

  3. C. Duran, S. Trolier-McKinstry, and G.L. Messing, J. Am. Ceram. Soc. 83, 2203 (2000).

    Article  CAS  Google Scholar 

  4. C. Duran, G.L. Messing, and S. Trolier-McKinstry, J. Cryst. Growth (2002, submitted for publication).

  5. M.M. Seabaugh, M.D. Vaudin, J.P. Cline, and G.L. Messing, J. Am. Ceram. Soc. 83, 2049 (2000).

    Article  CAS  Google Scholar 

  6. M.D. Vaudin, TexturePlus (National Institute of Standards and Technology, Ceramics Division, Gaithersburg, MD, 1999).

    Google Scholar 

  7. A. March, Z. Kristallogr. 81, 285 (1932).

    Google Scholar 

  8. W.A. Dollase, J. Appl. Crystallogr. 19, 267 (1986).

    Article  CAS  Google Scholar 

  9. V.V. Kirillov and V.A. Isupov, Ferroelectrics, 5, 3 (1973).

    Article  CAS  Google Scholar 

  10. K. Uchino and S. Nomura, Ferroelectr. Lett. Sect. 44, 55 (1982).

    Article  CAS  Google Scholar 

  11. S.J. Butcher and N.W. Thomas, J. Phys. Chem. Solids, 52, 595 (1991).

    Article  CAS  Google Scholar 

  12. C.L. Choy, W.P. Leung, T.G. Xi, Y. Fei, and C.F. Shao, J. Appl. Phys. 71, 170 (1992).

    Article  CAS  Google Scholar 

  13. NIH Image, V.1.56, by W. Rasband, National Institutes of Health, Washington, DC.

  14. C. Duran, G.L. Messing, and S. Trolier-McKinstry, J. Mater. Sci. (2002).

  15. H-Y. Lee and R. Freer, J. Appl. Phys. 81, 376 (1997).

    Article  CAS  Google Scholar 

  16. H-Y. Lee and R. Freer, J. Mater. Sci. 33, 1703 (1998).

    Article  CAS  Google Scholar 

  17. J.R. Carruthers and M. Grasso, J. Electrochem. Soc.: Solid State Sci. 117, 1426 (1970).

    Article  CAS  Google Scholar 

  18. E. Suvaci and G.L. Messing, J. Am. Ceram. Soc. 83, 2041 (2000).

    Article  CAS  Google Scholar 

  19. T.W. Cline, Ph.D. Thesis, Pennsylvania State University (1977).

  20. G.A. Smolenski and V.A. Isupov, Zh. Tekh. Fiz. 24, 1375 (1954).

    Google Scholar 

  21. A.M. Glass, J. Appl. Phys. 40, 4699 (1969).

    Article  CAS  Google Scholar 

  22. R.R. Neurgaonkar, W.W. Ho, W.K. Cory, W.F. Hall, and L.E. Cross, Ferroelectrics 51, 185 (1984).

    Article  CAS  Google Scholar 

  23. A. Bhanumathi, S.N. Murty, K. Umakantham, K.C. Mouli, G. Padmavathi, K.T. Rao, and V. Syamalamba, Ferroelectrics 102, 173 (1990).

    Article  CAS  Google Scholar 

  24. D. Viehland, Z. Xu, and W-H. Huang, Philos. Mag. A 71, 205 (1995).

    Article  CAS  Google Scholar 

  25. S.N. Murty, K.V.R. Murty, K.C. Mouli, A. Bhanumathi, S.B. Raju, G. Padmavathi, and K.L. Murty, Ferroelectrics 158, 325 (1994).

    Article  CAS  Google Scholar 

  26. K. Umakantham, S.N. Murty, K.S. Rao, and A. Bhanumathi, J. Mater. Sci. Lett. 6, 565 (1987).

    Article  CAS  Google Scholar 

  27. R.R. Neurgaonkar, W.K. Cory, J.R. Oliver, E.J. Sharp, G.L. Wood, and G.J. Salamo, Ferroelectrics 142, 167 (1993).

    Article  CAS  Google Scholar 

  28. R.R. Neurgaonkar, W.K. Cory, and J.R. Oliver, Ferroelectrics 51, 3 (1983).

    Article  Google Scholar 

  29. R. Guo, A.S. Bhalla, G. Burns, and F.H. Dacol, Ferroelectrics 93, 397 (1989).

    Article  CAS  Google Scholar 

  30. M. DiDomenico, Jr. and S.H. Wemple, J. App. Phys. 40, 720 (1969).

    Article  CAS  Google Scholar 

  31. R.R. Neurgaonkar, W.F. Hall, J.R. Oliver, W.W. Ho, and W.K. Cory, Ferroelectrics 87, 167 (1988).

    Article  CAS  Google Scholar 

  32. S.B. Deshpande, H.S. Potdar, P.D. Godbole, and S.K. Date, J. Am. Ceram. Soc. 75, 2581 (1992).

    Article  CAS  Google Scholar 

  33. I. Camlibel, J. Appl. Phys. 40, 1690 (1969).

    Article  CAS  Google Scholar 

  34. T. Takenaka and K. Sakata, Jpn. J. Appl. Phys. 19, 31 (1980).

    Article  CAS  Google Scholar 

  35. B. Jimenez, C. Alemany, J. Mendiola, and E. Maurer, Ferroelectrics 38, 841 (1981).

    Article  CAS  Google Scholar 

  36. D.A. Payne, Ph.D. Thesis, Pennsylvania State University (1973).

  37. K. Takemura, M. Ozgul, V. Bornand, S. Trolier-McKinstry, and C.A. Randall, J. Appl. Phys. 88, 7272 (2000).

    Article  CAS  Google Scholar 

  38. R.R. Neurgaonkar, J.R. Oliver, W.K. Cory, L.E. Cross, and D. Viehland, Ferroelectrics 160, 265 (1994).

    Article  CAS  Google Scholar 

  39. S.T. Liu, Ferroelectrics 22, 709 (1978).

    Article  CAS  Google Scholar 

  40. T.W. Cline, L.E. Cross, and S.T. Liu, J. Appl. Phys. 49, 4298 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duran, C., Trolier-McKinstry, S. & Messing, G.L. Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. Journal of Materials Research 17, 2399–2409 (2002). https://doi.org/10.1557/JMR.2002.0351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0351

Navigation