Skip to main content
Log in

Effect of Si2N2O content on the microstructure, properties, and erosion of silicon nitride–Si2N2O in situ composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silicon nitride–Si2N2O in situ composites were prepared by hot pressing powder mixtures of α–Si3N4, 6 wt% Y2O3, 1 wt% Al2O3, and 0–12 wt% SiO2. X-ray diffraction (XRD) analysis indicated that the volume percents of Si2N2O were 0, 13, 31, and 54 for the composites prepared with 0, 4, 8, and 12 wt% SiO2, respectively. XRD results also indicated that both silicon nitride grains and Si2N2O grains were laid down perpendicular to hot pressing direction. As the volume percent of Si2N2O increased, the width and the amount of elongated silicon nitride grains decreased, but the fracture toughness increased. Young’s modulus of the in situ composites decreased as the Si2N2O content was increased. The erosion rate decreased as the Si2N2O content was increased, in part, due to both the increased fracture toughness and the reduced grain size. Erosion of the composites occurred primarily due to the grain dislodgment. The sample without Si2N2O experienced micro-chipping due to transgranular fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wada, in Erosion of Ceramic Materials, edited by J.E. Ritter (Key Engineering Materials, Trans Tech Publications, Uetikon-Zuerich, Switzerland, 1992), Vol. 71, p. 51.

    Google Scholar 

  2. Y. Zhang, Y-B. Cheng, and S. Lathabai, J. Eur. Ceram. 21, 2435 (2001).

    Article  CAS  Google Scholar 

  3. B. Lawn, in Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, London, United Kingdom, 1993), pp. 303–304.

    Book  Google Scholar 

  4. D-M. Liu, J-T. Lin, and R.R-R. Lee, Ceram. Int. 24, 217 (1998).

    Article  CAS  Google Scholar 

  5. M. Ohashi, S. Kanzaki, and H. Tabata, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 96, 1073 (1988).

    Article  CAS  Google Scholar 

  6. H. Emoto, M. Mitomo, C-M. Wang, H. Hirosturu, and T. Inaba, J. Eur. Ceram. Soc. 18, 527 (1998).

    Article  CAS  Google Scholar 

  7. S.M. Wiedhorn and B.J. Hockey, J. Mater. Sci. 18, 766 (1983).

    Article  Google Scholar 

  8. S. Wada, J. Ceram. Soc. Jpn. 104, 247 (1996).

    Article  CAS  Google Scholar 

  9. A.G. Evans and E.A. Charles, J. Am. Ceram. Soc. 59, 371 (1976).

    Article  CAS  Google Scholar 

  10. D-S. Park, T-W. Roh, B-D. Han, H-D. Kim, and C. Park, J. Eur. Ceram. Soc. 22, 535 (2002).

    Article  CAS  Google Scholar 

  11. F. Lee, M.S. Sandlin, and K.J. Bowman, J. Am. Ceram. Soc. 76, 1793 (1993).

    Article  CAS  Google Scholar 

  12. C. Wang, H. Emoto, and M. Mitomo, J. Am. Ceram. Soc. 81, 1125 (1998).

    Article  CAS  Google Scholar 

  13. M. Ohashi, K. Nakamura, K. Hirao, M. Toriyama, and S. Kanzaki, Ceram. Int. 23, 27 (1997).

    Article  CAS  Google Scholar 

  14. S.J. Cho, B.J. Hockey, B.R. Lawn, and S.J. Bennison, J. Am. Ceram. Soc. 72, 1249 (1989).

    Article  CAS  Google Scholar 

  15. B.R. Lawn, J. Am. Ceram. Soc. 81, 1977 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, DS., Choi, HJ., Han, BD. et al. Effect of Si2N2O content on the microstructure, properties, and erosion of silicon nitride–Si2N2O in situ composites. Journal of Materials Research 17, 2275–2280 (2002). https://doi.org/10.1557/JMR.2002.0334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0334

Navigation