Skip to main content
Log in

Large cryogenic storage of hydrogen in carbon nanotubes at low pressures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report up to 6 wt% storage of H2 at 2 atm and T = 77 K in processed bundles of single-walled carbon nanotubes. The hydrogen storage isotherms are completely reversible; D2 isotherms confirmed this anomalous low-pressure adsorption and also revealed the effects of quantum mechanical zero point motion. We propose that our postsynthesis treatment of the sample improves access for hydrogen to the central pores within individual nanotubes and may also create a roughened tube surface with an increased binding energy for hydrogen. Such an enhancement may be needed to understand the strong adsorption at low pressure. We obtained an experimental isosteric heat q st = 125 ± 5 meV. Calculations are also presented that indicate disorder in the tube wall enhances the binding energy of H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Berry and S.M. Aceves, Energy Fuels 12, 49 (1998).

    Article  CAS  Google Scholar 

  2. S. Hynek, W. Fuller, and J. Bentley, Int. J. Hydrogen Energy 22, 601 (1997).

    Article  CAS  Google Scholar 

  3. F. Rodriguez-Reinoso and A. Linares-Solano, Chemistry and Physics of Carbon, edited by P.A. Thrower (Marcel Dekker, Inc., New York, 1989), Vol. 22, p. 1.

    Google Scholar 

  4. R.K. Agarwal, J.S. Noh, J.A. Schwarz, and P. Davini, Carbon 25, 219 (1987).

    Article  Google Scholar 

  5. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, and M.J. Heben, Nature 386, 377–379 (1997).

    Article  CAS  Google Scholar 

  6. M.J. Heben, A.C. Dillon, T. Gennett, J.L. Alleman, P.A. Parilla, K.M. Jones, and G.L. Hornyak, in Nanotube and Related Materials, edited by A.M. Rao (Mater. Res. Soc. Symp. Proc., 633), p. 17.

  7. C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, and M.S. Dresselhaus, Science 286, 1127–1129 (1999).

    Article  CAS  Google Scholar 

  8. P. Chen, X. Wu, J. Lin, and K.L. Tan, Science 285, 91–93 (1999).

    Article  CAS  Google Scholar 

  9. C. Nutzenadel, H. Zuttel, D. Chartouni, and L. Schlaphach, Electrochem. Solid State Lett. 2, 30 (1999).

    Article  CAS  Google Scholar 

  10. N. Rajalakshmi, K.S. Dhathathreyan, A. Govindaraj, and B.C. Satishkumar, Electrochim. Acta 45, 4511 (2000).

    Article  CAS  Google Scholar 

  11. S.M. Lee, K.S. Park, Y.C. Choi, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N-g. Kim, T. Frauenheim, and Y.H. Lee, Synth. Met. 113, 209 (2000).

    Article  CAS  Google Scholar 

  12. A. Chambers, C. Park, R.T.K. Baker, and N.M. Rodriguez, J. Phys. Chem. B 102, 4253 (1998).

    Article  CAS  Google Scholar 

  13. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, and R.E. Smalley, Appl. Phys. Lett. 74, 2307 (1999).

    Article  CAS  Google Scholar 

  14. R.T. Yang, Carbon 38, 623 (2000).

    Article  CAS  Google Scholar 

  15. F.E. Pinkerton, B.G. Wicke, C.H. Olk, G.G. Tibbetts, G.P. Meisner, M.S. Meyer, and J.F. Herbst, J. Phys. Chem. B 104, 9460 (2000).

    Article  CAS  Google Scholar 

  16. C.C. Ahn, Y. Ye, B.V. Ratnakumar, C. Witham, R.C. Bowman, Jr., and B. Fultz, Appl. Phys. Lett. 73, 3378 (1998).

    Article  CAS  Google Scholar 

  17. B.K. Gupta and O.N. Srivastava, Int. J. Hydrogen Energy 25, 825 (2000).

    Article  CAS  Google Scholar 

  18. M.S. Dresselhaus, K.A. Williams, and P.C. Eklund, MRS Bull. 45 (1999).

  19. A.C. Dillon and M.J. Heben, Appl. Phys. A 72, 133 (2001); V. Meregalli and M. Pariivello, Appl. Phys. A 72, 143 (2001); M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, Y-M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, and P. Bernier, Appl. Phys. A 72, 129 (2001); L. Schlapbach and A. Zuttl, Nature 414, 353 (2001).

    Article  CAS  Google Scholar 

  20. CarboLex Inc.; web site: www.carbolex.com.

  21. M.S. Dresselhaus and P.C. Eklund, Adv. Phys. 49, 705 (2000).

    Article  CAS  Google Scholar 

  22. M.S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).

    Google Scholar 

  23. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, Singapore, 1998).

    Book  Google Scholar 

  24. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer, Nature 388, 756 (1997).

    Article  CAS  Google Scholar 

  25. Hiden User Manual.

  26. B.K. Pradhan and P.C. Eklund (unpublished result).

  27. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, San Diego, CA, 1982).

    Google Scholar 

  28. D.B. Mawhinney, V. Naumenko, A. Kuznetsova, J.T. Yates, Jr., J. Liu, and R.E. Smalley, Chem. Phys. Lett., 324, 213 (2000).

    Article  CAS  Google Scholar 

  29. M.K. Kostov, M.W. Cole, J.C. Lewis, D. Phong, and J.K. Johnson, Chem. Phys. Lett. 332, 26 (2000).

    Article  CAS  Google Scholar 

  30. M.M. Calbi, F. Toigo, and M.W. Cole, Phys. Rev. Lett. 86, 5062 (2001).

    Article  CAS  Google Scholar 

  31. D. Frankel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, CA, 1996); D. Porezag, Th. Freuenheim, and Th. Kohler, Phys. Rev. B 51, 12947 (1995).

    Google Scholar 

  32. J.S. Arellano, L.M. Molina, A. Rubio, and J.A. Alonso, J. Chem. Phys. 112, 8114 (2000).

    Article  CAS  Google Scholar 

  33. A.J. Williamson, R.Q. Hood, and J.C. Grossman, Phys. Rev. Lett. 87, 246406 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, B.B., Harutyunyan, A.A., Stojkovic, D. et al. Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. Journal of Materials Research 17, 2209–2216 (2002). https://doi.org/10.1557/JMR.2002.0326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0326

Navigation