Skip to main content
Log in

Carbon nanotubular structures synthesis by means of ultraviolet laser ablation

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the synthesis of carbon nanotubular structures produced for the first time by means of pulsed KrF laser ablation of a graphite pellet at high temperature (1150 °C), under high argon gas pressure (500 torr), and at relatively high ultraviolet (UV) laser intensities (8 × 108 W/cm2). The carbon nanotubular structures were directly observed by transmission electron microscopy and characterized by micro-Raman spectroscopy. Nanohorns (∼2.5 nm diameter and ∼10 nm long), a few single-wall nanotubes (1.2 to 1.5 nm diameter), and other nanotubular structures (such as graphitic nanocages and low-aspect-ratio nanotubules) were clearly observed in the carbon deposit. Raman spectra in the low-frequency range confirmed a population of tubular structures with diameters ranging from 0.7 to 2.0 nm. It is shown that the relatively high UV laser intensity used here favors the growth of various nanotubular structures to the detriment of single-wall nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).

    Article  CAS  Google Scholar 

  2. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, United Kingdom, 1998).

    Book  Google Scholar 

  3. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Benett, H.F. Ghaemi, and T. Thio, Nature (London) 382, 54 (1996).

    Article  CAS  Google Scholar 

  4. D. Ugarte, T. Stökli, J.M. Bonard, A. Châtelain, and W.A. deHeer, Appl. Phys. A 67, 101 (1998).

    Article  CAS  Google Scholar 

  5. J. Kong, R.N. Franklin, C. Zhou, M. Chapline, S. Peng, C. Kyeongjae, and H. Dai, Nature (London) 287, 622 (2000).

    CAS  Google Scholar 

  6. J. Hu, M. Ouyang, P. Yang, and C.M. Lieber, Nature (London) 399, 48 (1999).

    Article  CAS  Google Scholar 

  7. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Chem. Phys. Lett. 243, 49 (1995).

    Article  CAS  Google Scholar 

  8. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Zxu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomànek, J.E. Fisher, and R.E. Smalley, Science 273, 493 (1996).

    Article  Google Scholar 

  9. A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, and M.J. Heben, Chem. Phys. Lett. 316, 13 (2000).

    Article  CAS  Google Scholar 

  10. M. Yudasaka, M. Zhang, and S. Iijima, Chem. Phys. Lett. 323, 549 (2000).

    Article  CAS  Google Scholar 

  11. A.G. Rinzler, J.L. Liu, H.J. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heyman, D.T. Colbert, R.S. Lee, J.E. Fisher, A.M. Rao, P.C. Eklund, and R.E. Smalley, Appl. Phys. A 67, 29 (1998).

    Article  CAS  Google Scholar 

  12. N. Braidy, M.A. El Khakani, and G.A. Botton, Chem. Phys. Lett. 354, 88 (2002).

    Article  CAS  Google Scholar 

  13. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, Chem. Phys. Lett. 309, 165 (1999).

    Article  CAS  Google Scholar 

  14. X. Lin, K. Wang, V.P. Dravid, R.H.P. Chang, and J.B. Ketterson, Appl. Phys. Lett. 64, 181 (1994).

    Article  CAS  Google Scholar 

  15. S.L. Cullen, G.A. Botton, A.I. Kirkland, P.D. Brown, and C.J. Humphreys, in Electron Microscopy and Analysis 1993 Inst. Phys. Conf. Ser. 138, edited by A.J. Craven (IOP, London, United Kingdom, 1993), p. 79.

    Google Scholar 

  16. Y. Zhang, H. Gu, and S. Iijima, Appl. Phys. Lett. 73, 3827 (1998).

    Article  CAS  Google Scholar 

  17. S. Iijima, Chem. Sripta 14, 117 (1978–1979).

    Google Scholar 

  18. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, A. Thess, R.E. Smalley, G. Dresselhaus, and M.S. Dresselhaus, Science 275, 187 (1997).

    Article  CAS  Google Scholar 

  19. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, and P.C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).

    Article  CAS  Google Scholar 

  20. N. Braidy, M.A. El Khakani, and G.A. Botton, Carbon (2002, in press).

  21. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, and H.A. Goldberg, Graphite Fibers and Filaments, Springer Series in Materials Science, Vol. 5 (Springer-Verlag, Berlin, Germany, 1988).

    Book  Google Scholar 

  22. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 59, 2388 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braidy, N., Khakani, M.M.E. & Botton, G.G. Carbon nanotubular structures synthesis by means of ultraviolet laser ablation. Journal of Materials Research 17, 2189–2192 (2002). https://doi.org/10.1557/JMR.2002.0321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0321

Navigation