Skip to main content
Log in

Elastoplastic load–depth hysteresis in pyramidal indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Extensive indentation tests were conducted for nineteen different engineering materials ranging from brittle to ductile materials, and including hard ceramics, ductile metals, and a soft organic polymer. Three tetrahedral pyramid indenters with specific face angles β [shallow pyramid (β = 10°), Vickers (β = 22°), and sharp pyramid (β = 40°) indenters] were used. All the materials tested were subjected to the quadratic load P and penetration depth h relationship P = k1h2 on loading, and most of the tested materials to the quadratic unloading relationship of P = k2(hhr)2 with the residual depth hr after a complete unload. To determine the contact area at peak indentation load, a specially designed depth-sensing instrument was constructed, on which the contact behavior during loading/unloading was examined by through thickness observation of transparent specimens. All the characteristic indentation parameters were investigated on the basis of simple elastoplastic model, and correlated well with the nondimensional strain E′ tan β/H, in which the elastic modulus E′ was a measure for elasticity, true hardness H was a measure for plasticity, and the inclined face angle β characterized the indenter. The ratio of the conventional Meyer hardness HM to the true hardness H of the materials tested ranged from 0.2 to 0.9 as a function of E′ tan β/H. The cavity model suggested that true hardness H is expressed by the yield stress Y through a constraint factor C as H = C · Y with C ≈ 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor, Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951), Chaps. 4–7.

    Google Scholar 

  2. K.L Johnson, Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985), Chaps. 3–6.

    Book  Google Scholar 

  3. N.A. Stilwell and D. Tabor, Proc. Phys. Soc. London 78, 169 (1961).

    Article  Google Scholar 

  4. S.I. Bulychev, V.P. Alekhim, M.Kh. Shorshorov, A.P. Ternovskii, and G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975).

    CAS  Google Scholar 

  5. B.R. Lawn and V.R. Howes, J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  6. J.L. Loubet, J.M. Georges, and G. Meille, in Microindentation Techniques in Materials Science and Engineering, edited by P.J. Blay and B.R. Lawn (ASTM STP889, Philadelphia, PA, 1986), p. 72.

    Google Scholar 

  7. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  8. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  9. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  10. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  11. M. Sakai, Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  12. E. Söderlund and D.J. Rowcliffe, J. Hard Mater. 5, 149 (1994).

    Google Scholar 

  13. R.F. Cook and G.M. Pharr, J. Hard Mater. 5, 179 (1994).

    CAS  Google Scholar 

  14. S.V. Hainsworth, H.W. Chandler, and T.F. Page, J. Mater. Res. 11, 1987 (1996).

    Article  CAS  Google Scholar 

  15. M. Sakai, S. Shimizu, and T. Ishikawa, J. Mater. Res. 14, 1471 (1999).

    Article  CAS  Google Scholar 

  16. Y-T. Cheng and C-M. Cheng, Int. J. Solids Struct. 36, 1231 (1999).

    Article  Google Scholar 

  17. M. Sakai, J. Mater. Res. 14, 3630 (1999).

    Article  CAS  Google Scholar 

  18. S. Shimizu, T. Yanagimoto, and M. Sakai, J. Mater. Res. 14, 4075 (1999).

    Article  CAS  Google Scholar 

  19. A.E. Giannakopoulos and S. Suresh, Scripta Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  20. Y-T. Cheng and C-M. Cheng, Surf. Coat. Technol. 133–134, 417 (2000).

    Article  Google Scholar 

  21. M. Sakai and S. Shimizu, J. Non-Cryst. Solids 282, 236 (2001).

    Article  CAS  Google Scholar 

  22. X. Chen and J.J. Vlassak, J. Mater. Res. 16, 2974 (2001).

    Article  CAS  Google Scholar 

  23. J. Malzbender and G. de With, J. Mater. Res. 17, 502 (2002).

    Article  CAS  Google Scholar 

  24. JIS standard B-7735, Vickers hardness test—Calibration of the reference blocks (Japanese Standard Association, 1997).

  25. JIS standard G-4805, High carbon chromium bearing steels (Japanese Standard Association, Tokyo, Japan, 1999).

  26. JIS standard H-3100, Copper and copper alloy sheets, plates, and strips (Japanese Standard Association, 1992).

  27. ISO standard 426-1, Wrought copper-zinc alloys—Chemical composition and forms of wrought products—Part 1: Non-leaded special copper-zinc alloys (International Standardization Organization, 1983).

  28. ISO/DIS standard 683-17, Heat-treated steels, alloy steels and free-cutting steels—Part 17: Ball and roller bearing steels (International Standardization Organization, Geneva, Switzerland, 1997).

  29. R.B. King, Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  30. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, M., Nakano, Y. Elastoplastic load–depth hysteresis in pyramidal indentation. Journal of Materials Research 17, 2161–2173 (2002). https://doi.org/10.1557/JMR.2002.0318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0318

Navigation