Skip to main content
Log in

Micromachining of mesoporous oxide films for microelectromechanical system structures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The high porosity and uniform pore size of mesoporous oxide films offer unique opportunities for microelectromechanical system (MEMS) devices that require low density and low thermal conductivity. This paper provides the first report in which mesoporous films were adapted for MEMS applications. Mesoporous SiO2 and Al2O3 films were prepared by spin coating using block copolymers as the structure-directing agents. The resulting films were over 50% porous with uniform pores of 8-nm average diameter and an extremely smooth surface. The photopatterning and etching characteristics of the mesoporous films were investigated and processing protocols were established which enabled the films to serve as the sacrificial layer or the structure layer in MEMS devices. The unique mesoporous morphology leads to novel behavior including extremely high etching rates and the ability to etch underlying layers. Surface micromachining methods were used to fabricate three basic MEMS structures, microbridges, cantilevers, and membranes, from the mesoporous oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.K. Raman, M.T. Anderson, and C.J. Brinker, Chem. Mater. 8, 1682 (1996).

    Article  CAS  Google Scholar 

  2. D. Zhao, P. Yang, Q. Huo, B.F. Chmelka, and G.D. Stucky, Curr. Opin. Solid State Mater. Sci. 3, 111 (1998).

    Article  CAS  Google Scholar 

  3. A. Van Blaaderen, R. Ruel, and P. Wiltzius, Nature 385, 321 (1997).

    Article  Google Scholar 

  4. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  5. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Chem. Mater. 11, 2813 (1999).

    Article  CAS  Google Scholar 

  6. H. Yang, G.A. Ozin, and C.T. Kresge, Adv. Mater. 10, 883 (1998).

    Article  CAS  Google Scholar 

  7. D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, and G.D. Stucky, Adv. Mater. 10, 1380 (1998).

    Article  CAS  Google Scholar 

  8. Y. Lu, R. Ganguli, E.A. Drewien, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, and J.I. Zink, Nature 389, 364 (1997).

    Article  CAS  Google Scholar 

  9. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, and G.D. Stucky, J. Am. Chem. Soc. 120, 6042 (1998).

    Google Scholar 

  10. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Science 282, 2244 (1998).

    Article  CAS  Google Scholar 

  11. P. Yang, G. Wirnsberger, H.C. Huang, S.R. Cordero, M.D. McGehee, B. Scott, T. Deng, G.M. Whitesides, B.F. Chmelka, S.K. Buratto, and G.D. Stucky, Science 287, 465 (2000).

    Article  CAS  Google Scholar 

  12. R.C. Hayward, P. Alberius-Henning, B.F. Chmelka, and G.D. Stucky, Microporous Mesoporous Mater. 44–45, 619 (2001).

    Article  Google Scholar 

  13. See the special issue of MRS Bull. April 2001: Microelectromechanical Systems: Technology and Applications, guest edited by D. Bishop, A. Heuer and D. Williams, p. 282.

  14. (a) S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneau, and J-P. Boilot, J. Mater. Chem. 10, 1331 (2000); (b) S. Besson, C. Ricolleau, T. Gacoin, C. Jacquiod, and J-P. Boilot, J. Phys. Chem. B 104, 12095 (2000).

    Article  CAS  Google Scholar 

  15. D.J. Suh and T-J. Park, Chem. Mater. 9, 1903 (1997).

    Article  CAS  Google Scholar 

  16. B. Chu and Z. Zhou, in Nonionic Surfactants: polyoxyalkylene block copolymers, edited by V.M. Nace (Marcel Dekker, New York, 1996), p. 67.

    Google Scholar 

  17. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, U.K., 1986).

    Google Scholar 

  18. F. Mitschke, Opt. Lett. 14, 967 (1989).

    Article  CAS  Google Scholar 

  19. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamashita, J. Non-Cryst. Solids 135, 86 (1991).

    Article  CAS  Google Scholar 

  20. N. Clark, MRS Bull. 26, 320 (2001).

    Article  Google Scholar 

  21. I.H. Joe, A.K. Vasudevan, G. Aruldhas, A.D. Damodaran, and K.G.K. Warrier, J. Solid State Chem. 131, 181 (1997).

    Article  CAS  Google Scholar 

  22. C. Guo, H.Z. Liu, and J.Y. Chen, Colloid Polym. Sci. 277, 376 (1999).

    Article  CAS  Google Scholar 

  23. A. Bertoluzza, C. Fagnano, M.A. Morelli, V. Gottardi, and M. Guglielmi, J. Non-Cryst. Solids 48, 117 (1982).

    Article  CAS  Google Scholar 

  24. N. Ozer, J.P. Cronin, Y.J. Yao, and A.P. Tomsia, Sol. Energy Mater. Sol. Cells 59, 355 (1999).

    Article  CAS  Google Scholar 

  25. V.J. Silvestri, C.M. Osburn, and D.W. Ormond, J. Electrochem. Soc. 125, 902 (1978).

    Article  CAS  Google Scholar 

  26. T. Yasuyuki and S.M. Tadashi, J. Vac. Sci. Technol., A 16, 2042 (1998).

    Article  Google Scholar 

  27. M.J. Madou, Fundamentals of Microfabrication (CRC Press, New York, 1997).

    Google Scholar 

  28. K.R. Williams and R.S. Muller, J. Microelectromech. Syst. 5, 256 (1996).

    Article  CAS  Google Scholar 

  29. S.D. Senturia, Microsystem Design (Kluwer Academic Publishers, Boston, MA, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, JA., Fan, SK., Kim, CJ. et al. Micromachining of mesoporous oxide films for microelectromechanical system structures. Journal of Materials Research 17, 2121–2129 (2002). https://doi.org/10.1557/JMR.2002.0313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0313

Navigation