Skip to main content
Log in

Nanocrystallization of Cu–(Zr or Hf)–Ti metallic glasses

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Crystallization of the Cu60Zr30Ti10 and Cu60Hf25Ti15 metallic glasses was studied by x-ray diffractometry, transmission electron microscopy, differential scanning and isothermal calorimetries. Metastable Cu–Zr–Ti and Cu–Hf–Ti cubic phases primarily precipitated in the Cu60Zr30Ti10 and Cu60Hf25Ti15 metallic glasses. The Cu60Zr30Ti10metallic glass crystallizes with low energy barrier for nucleation while crystallization of the Cu60Hf25Ti15 metallic glass takes place by nucleation and diffusion-controlled growth of cubic Cu–Hf–Ti phase particles with constant nucleation rate. The Cu60Hf25Ti15 metallic glass is characterized by a low activation energy for nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.H. Lin and W.L. Johnson, J. Appl. Phys. 78, 6514 (1995).

    Article  CAS  Google Scholar 

  2. T. Zhang and A. Inoue, Mater. Trans. JIM 40, 301 (1999).

    Article  CAS  Google Scholar 

  3. C. Li, J. Saida, M. Kiminami, and A. Inoue, J. Non-Cryst. Solids 261, 108 (2000).

    Article  CAS  Google Scholar 

  4. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Mater. 49, 2645 (2001).

    Article  CAS  Google Scholar 

  5. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Mater. Trans. JIM 42, 1149 (2001).

    Article  CAS  Google Scholar 

  6. Z. Altounian, T. Guo-hua, and J.O. Storm-Olsen, J. Appl. Phys. 53, 4755 (1982).

    Article  Google Scholar 

  7. C.G. Woychik and T.B. Massalski, Z. Metallkd. 79, 149 (1988).

    CAS  Google Scholar 

  8. H.E. Kissinger, J. Res. Natl. Bur, Stand (U.S.) 57, 217 (1956).

    Article  CAS  Google Scholar 

  9. M.W.A. Johnson and K.F. Mehl, Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).

    Google Scholar 

  10. M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  CAS  Google Scholar 

  11. A.N. Kolmogorov, Isz. Akad. Nauk. USSR, Ser. Matem. 3, 355 (1937) (in Russian).

    Google Scholar 

  12. J.W. Christian, The Theory of Transformations in Metals, Alloys (Pergamon Press, Oxford, U.K., 1975), p. 542.

    Google Scholar 

  13. A.F. Wells, Structural Inorganic Chemistry (Oxford University Press, Oxford, U.K., 1984), p. 1382.

    Google Scholar 

  14. D.V. Louzguine and A. Inoue, Mater. Res. Bull. 34, 1991 (1999).

    Article  CAS  Google Scholar 

  15. T.W. Barbee, Jr., R.G. Walmsley, A.F. Marshall, D.L. Keith, and D.A. Stevenson, Appl. Phys. Lett. 38, 132 (1981).

    Article  CAS  Google Scholar 

  16. R. Schultz, K. Samwer, and W.L. Johnson, J. Non-Cryst. Solids 62, 997 (1984).

    Article  Google Scholar 

  17. J.F. Loffler and W.L. Johnson, Mater. Sci. Eng. A 304–306, 670 (2001).

    Article  Google Scholar 

  18. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  19. S. Sachdev and D.R. Nelson, Phys. Rev. B 32, 4592 (1985).

    Article  CAS  Google Scholar 

  20. K.F. Kelton, Int. Mater. Rev. 38, 105 (1993).

    Article  CAS  Google Scholar 

  21. D.V. Louzguine, A. Takeuchi, and A. Inoue, J. Non-Cryst. Solids 289, 196 (2001).

    Article  CAS  Google Scholar 

  22. F.R. De Boer, F.R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals (Elsevier Science Publishers, North-Holland, Amsterdam, The Netherlands, 1988), p. 250.

    Google Scholar 

  23. T.B. Massalski, Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), p. 1444.

    Google Scholar 

  24. T.B. Massalski, Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), p. 2129.

    Google Scholar 

  25. D.V. Louzguine and A. Inoue, Appl. Phys. Lett. 79, 3410 (2001).

    Article  CAS  Google Scholar 

  26. A.M. James and M.P. Lord, Macmillan’s Chemical and Physical Data (Macmillan, London, U.K., 1992), p. 565.

    Google Scholar 

  27. J. Eckert, N. Mattern, M. Zinkevitch, and M. Seidel, Mater. Trans. JIM 39, 623 (1998).

    Article  CAS  Google Scholar 

  28. M.V. Nevitt, J.W. Downey, and R.A. Morris, Trans. Metall. Soc. AIME 218, 1019 (1960).

    CAS  Google Scholar 

  29. J. Saida, M. Matsushita, C. Li, and A. Inoue, Appl. Phys. Lett. 76, 3558 (2000).

    Article  CAS  Google Scholar 

  30. D.V. Louzguine, M.S. Ko, S. Ranganathan, and A. Inoue, J. Nanosci. Nanotechnol. 1, 185 (2001).

    Article  CAS  Google Scholar 

  31. R.J. Ackermann, S.P. Garg, and E.G. Rauh, J. Am. Ceram. Soc. 60, 341 (1977).

    Article  CAS  Google Scholar 

  32. J.F. Elliot, Metall. Trans. B 7, 17 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Louzguine.

Additional information

Family name can also be spelled as Luzgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louzguine, D.V., Inoue, A. Nanocrystallization of Cu–(Zr or Hf)–Ti metallic glasses. Journal of Materials Research 17, 2112–2120 (2002). https://doi.org/10.1557/JMR.2002.0312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0312

Navigation