Skip to main content
Log in

Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High current electropulsing was applied to a low-carbon steel in the solid state. The relationship between grain size and experimental conditions was revealed. It was found that the ultrafine-grained (UFG) microstructure could be formed when electric current density, heating rate, and cooling rate all were high. The UFG samples prepared by applying electropulsing were free of porosity and contamination, and had no large microstrain. Also, their tensile strength was dramatically enhanced over that of their coarse-grained counterparts, without a decrease in ductility. The mechanism for grain refinement and formation of the UFG microstructure was discussed. It is proposed that the effect of a decrease in thermodynamic barrier and enhancement of nucleation rate in a current-carrying system cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 231 (1989).

    Article  Google Scholar 

  2. K. Lu, Mater. Sci. Eng. R16, 161 (1996).

    Article  Google Scholar 

  3. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  4. Y.Z. Zhou, J.D. Guo, Y.Y. Shan, B.Q. Wang, and G.H. He, Chin. J. Mater. Res. 16, 243 (2002).

    CAS  Google Scholar 

  5. W. Zhang, M.L. Sui, K.Y. Hu, D.X. Li, X.N. Guo, G.H. He, and B.L. Zhou, J. Mater. Res. 15, 2065 (2000).

    Article  CAS  Google Scholar 

  6. V.H. Wever and W. Seith, Z. Elektrochem. 59, 942 (1955).

    CAS  Google Scholar 

  7. C. Bosvieux and J. Friedel, J. Phys. Chem. Solids 23, 123 (1962).

    Article  CAS  Google Scholar 

  8. P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).

    Article  CAS  Google Scholar 

  9. A.F. Sprecher, S.L. Mannan, and H. Conrad, Acta Metall. 34, 1145 (1986).

    Article  CAS  Google Scholar 

  10. K. Okazaki, M. Kagawa, and H. Conrad, Scripta Metall. 12, 1063 (1978).

    Article  CAS  Google Scholar 

  11. H. Conrad and A.F. Sprecher, in Dislocations in Solids, edited by F.R.N. Nabarro (Elsevier Science Publishers, Amsterdam, The Netherlands, 1989), p. 497.

    Google Scholar 

  12. A.K. Misra, Metall. Trans. 16A, 1354 (1985).

    Article  CAS  Google Scholar 

  13. J.P. Barnak, A.F. Sprecher, and H. Conrad, Scripta Metall. 32, 879 (1995).

    Article  CAS  Google Scholar 

  14. J.M. Li, S.L. Li, J. Li, and H.T. Liu, Scripta Metall. 31, 1691 (1994).

    Article  CAS  Google Scholar 

  15. Z.H. Lai, H. Conrad, Y.S. Chao, S.Q. Wang, and J. Sun, Scripta Metall. 23, 305 (1989).

    Article  CAS  Google Scholar 

  16. H. Mizubayashi and S. Okuda, Phys. Rev. B 40, 8057 (1989).

    Article  CAS  Google Scholar 

  17. R. Takemoto, M. Nagata, and H. Mizubayashi, Acta Mater. 44, 2787 (1996).

    Article  CAS  Google Scholar 

  18. Y.Z. Zhou, R.S. Qin, S.H. Xiao, G.H. He, and B.L. Zhou, J. Mater. Res. 15, 1056 (2000).

    Article  CAS  Google Scholar 

  19. Y.Z. Zhou, Y. Zeng, G.H. He, and B.L. Zhou, J. Mater. Res. 16, 17 (2001).

    Article  CAS  Google Scholar 

  20. H.B. Huntington and A.R. Drone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  CAS  Google Scholar 

  21. F.R.N. Nabarro, Theory of Crystal Dislocations (Clarendon Press, Oxford, United Kingdom, 1967), p. 529.

    Google Scholar 

  22. Y. Dolinsky and T. Elperin, J. Appl. Phys. 73, 5283 (1993).

    Article  CAS  Google Scholar 

  23. Y. Dolinsky and T. Elperin, Phys. Rev. B 47, 14778 (1993).

    Article  CAS  Google Scholar 

  24. Y. Dolinsky and T. Elperin, Phys. Rev. B 52, 54 (1994).

    Google Scholar 

  25. R.S. Qin and B.L. Zhou, Int. J. Non-Equilib. Proc. 11, 77 (1998).

    CAS  Google Scholar 

  26. R.S. Qin and B.L. Zhou, Chin. J. Mater. Res. 11, 69 (1997).

    CAS  Google Scholar 

  27. R.S. Qin, H.C. Yan, G.H. He, and B.L. Zhou, Chin. J. Mater. Res. 9, 219 (1995).

    CAS  Google Scholar 

  28. M.C. Zhao, Y.Y. Shan, J.B. Qu, K. Yang, L. Zheng, and S. Gao, Acta Metall. Sinica 37, 179 (2001).

    CAS  Google Scholar 

  29. Y.Z. Zhou, W. Zhang, M.L. Sui, D.L. Li, G.H. He, and J.D. Guo, J. Mater. Res. 17, 921 (2002).

    Article  CAS  Google Scholar 

  30. Metals Handbook, 10th ed., edited by ASM International Handbook Committee (ASM International, Metals Park, OH, 1990), p. 1124.

  31. D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys (Van Nostrand Reinhold Company, Berkshire, United Kingdom, 1984), pp. 186–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhang, W., Wang, B. et al. Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. Journal of Materials Research 17, 2105–2111 (2002). https://doi.org/10.1557/JMR.2002.0311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0311

Navigation