Skip to main content
Log in

Microstructure formation and phase selection in the solidification of Al2O3–5 at% SiO2 melts by splat quenching

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An Al2O3–5 at% SiO2 specimen was levitated in an Aero-Acoustic Levitation apparatus and then melted when a continuous-wave CO2 laser beam heating system was incorporated. The sample can be highly undercooled when decreasing the laser power. Rapid solidification by splat quenching can be realized at defined temperatures, using well-polished copper as chilling anvils. Microstructure transition from nonfaceted colony to strong faceted dendrites was observed when the melt was quenched at ΔT = 50 K, indicating that a kinetic contribution for roughening the microstructure may be significant for the morphology transition. The impacting, spreading, and solidifying processes were analyzed on the basis of microstructure observation. The additional undercooling was suggested to vary per an exponential relation with distance when the kinetic effect was taken into account. The nucleation behavior was also discussed according to the proposed additional undercoolings to demonstrate the difference in nucleation population at various regions. When the melt undercooling increases to 190 K, a double-phase structure with small polycrystalline inclusion embedded into amorphous matrix was obtained. The continuous cooling transformation profile was proposed to account for the phase selection upon quenching. The present observation and suggested model for acquiring high additional undercoolings are useful in elucidating the work of others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Klement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960). For an excellent review on metallic glass, one can refer to A. Lindsay Greer, Science, 267, 1947 (1995).

    Article  CAS  Google Scholar 

  2. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  3. C.H. Smith, in Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, edited by Howard H. Liebermann (Marcel Dekker, Inc., New York, 1993), p. 617.

    Google Scholar 

  4. R.K. Mishra, J. Appl. Phys. 64, 5562 (1988).

    Article  CAS  Google Scholar 

  5. A. Zaluska, X. Yan, Z. Altounian, J.O. Strom-Olsen, R. Allem, and G. L’Esperance, J. Mater. Res. 6, 724 (1991).

    Article  CAS  Google Scholar 

  6. J.A. Sarreal and C.C. Koch, Mater. Sci. Eng. A A136, 141 (1991).

    Article  CAS  Google Scholar 

  7. A. Yavari and J.L. Verger-Gaugry, J. Mater. Sci. 23, 3383 (1988).

    Article  CAS  Google Scholar 

  8. Y. Abe, Master Thesis, The University of Tokyo, 2000.

  9. T. Volkmann, W. Loeser, and D.M. Herlach, Metall. Mater. Trans. A 28A, 453 (1997).

    Article  CAS  Google Scholar 

  10. W. Hofmeister, R.J. Bayuzick, G. Trapaga, D.M. Matson, and M.C. Flemings, in Solidification 1998, edited by S.P. Marsh, J.A. Dantzig, R. Trivedi, W. Hofmeister, M.G. Chu, E.J. Lavernia, and J-H. Chun, (The Minerals, Metals & Materials Society, Warrendale, PA, 1998), p. 375.

    Google Scholar 

  11. P.T. Sarjeant and R. Roy, J. Appl. Phys. 38, 4540 (1967).

    Article  CAS  Google Scholar 

  12. S. Sömiya, M. Ishigame, and M. Yoshimura, Kou-neisu Gijutsu, (Uchida-Rokakuho Pub., Tokyo, Japan, 1987), p. 59.

    Google Scholar 

  13. T. Ando and Y. Shiohara, J. Am. Ceram. Soc. 74, 410 (1991).

    Article  CAS  Google Scholar 

  14. T. Bhatia, K. Chattopadhyay, and V. Jayaram, J. Am. Ceram. Soc. 84, 1873 (2001).

    Article  CAS  Google Scholar 

  15. J.K. Richard Weber, J.J. Felten, and P.C. Nordine, Rev. Sci. Instrum. 67, 522 (1996).

    Article  Google Scholar 

  16. J.K. Richard Weber, D. Scott Hampton, D.R. Merkley, C.A. Rey, M.M. Zatarski, and P.C. Nordine, Rev. Sci. Instrum. 65, 456 (1994).

    Article  CAS  Google Scholar 

  17. K. Nagashio and K. Kuribayashi, Acta Mater. 49, 1947 (2001).

    Article  CAS  Google Scholar 

  18. K. Nagashio, W.H. Hofmeister, D.E. Gustafson, A. Altgilbers, R.J. Bayuzick, and K. Kuribayashi, J. Mater. Res. 16, 138 (2001).

    Article  CAS  Google Scholar 

  19. G.A. Bertero, W.H. Hofmeister, M.B. Robinson, and R.J. Bayuzick, Metall. Trans. A 22A, 2713 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Nagashio, K. & Kuribayashi, K. Microstructure formation and phase selection in the solidification of Al2O3–5 at% SiO2 melts by splat quenching. Journal of Materials Research 17, 2026–2032 (2002). https://doi.org/10.1557/JMR.2002.0300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0300

Navigation