Skip to main content
Log in

Synthesizing Nanocrystalline Carbon Thin Films by Hot Filament Chemical Vapor Deposition and Controlling Their Microstructure

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline carbon (n-C) thin films were deposited on Mo substrates using methane (CH4) and hydrogen (H2) by the hot-filament chemical vapor deposition (HFCVD) technique. Process parameters relevant to the secondary nucleation rate were systematically varied (0.3–2.0% methane concentrations, 700–900 °C deposition temperatures, and continuous forward and reverse bias during growth) to study the corresponding variations in film microstructure. Standard nondestructive complementary characterization tools such as scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy were utilized to obtain a coherent and comprehensive picture of the microstructure of these films. Through these studies we obtained an integral picture of the material grown and learned how to control key material properties such as surface morphology (faceted versus evenly smooth), grain size (microcrystalline versus nanocrystalline), surface roughness (from rough 150 rms to smooth 70 rms), and bonding configuration (sp 3 C versus sp 2 C), which result in physical properties relevant for several technological applications. These findings also indicate that there exist fundamental differences between HFCVD and microwave CVD (MWCVD) for methane concentrations above 1%, whereas some similarities are drawn among films grown by ion-beam assisted deposition, HFCVD assisted by low-energy particle bombardment, and MWCVD using noble gas in replacement of traditionally used hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Bachmann and R. Messier, Chem. Eng. News 67, 24 (1989).

    Article  CAS  Google Scholar 

  2. C.S.J. Pickles, J.R. Brandon, S.E. Joe, and T.J. Schaich, Diamond Relat. Mater. 11 (2001, in press).

  3. J.E. Field, The Properties of Diamonds (Academic Press, London, United Kingdom, 1979).

    Google Scholar 

  4. P. John, Diamond Relat. Mater. 11, (2001, in press).

  5. J.B. Cui, J. Robertson, and W.I. Milne, Diamond Relat. Mater. 10, 868 (2001) and references therein.

    Article  CAS  Google Scholar 

  6. S. Gupta, R.S. Katiyar, D.R. Gilbert, R.K. Singh, and G. Morell, J. Appl. Phys. 88, 5695 (2000) and references therein.

    Article  CAS  Google Scholar 

  7. J. Van der Weide and R.J. Nemanich, Appl. Phys. Lett. 62, 1878 (1993).

    Article  Google Scholar 

  8. J. Van der Weide and R.J. Nemanich, Phys. Rev. B 49, 13 629 (1994).

  9. K.H. Chen, Y.L. Lai, L.C. Chen, J.Y. Wu, and F.J. Kao, Thin Solid Films 270, 143 (1995).

    Article  CAS  Google Scholar 

  10. W.A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  11. M.J. Ulczynski, D.K. Reinhard, M. Prytajko, and J. Amusen, in Advances in New Diamond Science and Technology, Proceedings of the 4th International Conference on New Diamond Science and Technology, Kobe, Japan, 1994, edited by S. Kaito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yihikawa . (MYU, Tokyo, Japan, 1994), p. 41.

    Google Scholar 

  12. E.G. Spencer, P.H. Schmidt, D.C. Roy, and F.J. Salsalone, Appl. Phys. Lett. 29, 118 (1976).

    Article  CAS  Google Scholar 

  13. S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys. 21, L183 (1982).

    Article  Google Scholar 

  14. D. Gruen, Ann. Rev. Mater. Sci. 29, 211 (1999) and references therein.

    Article  CAS  Google Scholar 

  15. Y. Lifshitz, in The Physics of Diamond, Proceedings of the International school of Physics “Enrico Fermi,” Course CXXXV, edited by A. Paoletti and A. Tucciarone (IOS Press, Amsterdam, The Netherlands, 1997), pp. 209–211.

    Google Scholar 

  16. For review, see: Y. Lifshitz, Diamond Relat. Mater. 8, 1659 (1999).

  17. A. Grill, Diamond Relat. Mater. 8, 428 (1999) and references therein.

    Article  CAS  Google Scholar 

  18. D.R. Mckenzie, Rep. Prog. Phys. 59, 1611 (1996).

    Article  CAS  Google Scholar 

  19. S. Aisenberg and R. Chabot, J. Appl. Phys. 42, 2953 (1971).

    Article  CAS  Google Scholar 

  20. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642 (1983).

    Article  CAS  Google Scholar 

  21. W.A. Yarbrough and R. Roy, in EA-15, Diamond and Diamondlike Material Synthesis, edited by G.H. Johnson, M.W. Geis, and A.R. Badzian (1988) p. 77.

    Google Scholar 

  22. M.J. Mirtich, Mater. Sci. Forum, 52 & 53, 217 (1989).

    Google Scholar 

  23. D.M. Bhusari, J.R. Yang, T.Y. Wang, S.T. Lin, K.H. Chen, and L.C. Chen, Solid State Commun. 107, 301 (1998) and references therein.

    Article  CAS  Google Scholar 

  24. T. Sharda, M.M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Diamond Relat. Mater. 10, (2001).

  25. S. Jiao, A. Sumant, M.A. Kirk, D.M. Gruen, A.R. Krauss, and O. Auciello, J. Appl. Phys. 90, 183 (2001) and references therein.

    Article  CAS  Google Scholar 

  26. L.C. Nistor, J. Van Landuyt, V.G. Ralchenko, E.D. Obraztsova, and A.A. Smolin, Diamond Relat. Mater. 6, 159 (1997) and references therein.

    Article  CAS  Google Scholar 

  27. T.D. Corrigan, A.R. Krauss, D.M. Gruen, O. Auciello, and R.P.H. Chang, Amorphous and Nanostructured Carbon, edited by J. Robertson, J.P. Sullivan, O. Zhou, T.B. Allen, and B.F. Coll (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), p. 233.

    Google Scholar 

  28. N.A. Morrison, S. Muhl, S.E. Rodil, A.C. Ferrari, M. Nesladek, W.I. Milne, and J. Robertson, Phys. Status Solidi A 172, 79 (1999).

    Article  CAS  Google Scholar 

  29. S.A. Alterowitz, J.D. Warner, D.C. Liu, and J.J. Pouch, J. Electrochem. Soc. 133, 2339 (1986).

    Article  Google Scholar 

  30. D.R. Mckenzie, D.A. Muller, and B.A. Paithorpe, Phy. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  31. J. Robertson, Philos. Mag. B 76, 335 (1997) and references therein.

    Article  CAS  Google Scholar 

  32. S. Gupta, B.L. Weiss, B.R. Weiner, and G. Morell, J. Appl. Phys. 89, 5671 (2001); O. Gröning, O.M. Küttel, P. Gröning, and L. Schlapbach, J. Vac. Sci. Technol., B 15, 1970 (1999) and references therein.

    Article  CAS  Google Scholar 

  33. B. Hong, J. Lee, R.W. Collins, Y. Kuang, W. Drawl, R. Messier, T.T. Tsong, and Y.F. Strausser, Diamond Relat. Mater. 6, 55 (1997).

    Article  CAS  Google Scholar 

  34. A. Sawabe and T. Inuzuka, Appl. Phys. Lett. 46, 146 (1985).

    Article  CAS  Google Scholar 

  35. H. Kersten and G.M.W. Kroesen, J. Vac. Sci. Technol., A 8, 38 (1990).

    Article  CAS  Google Scholar 

  36. W. Möller, W. Fukarek, K. Lange, A. von Keudell, and W. Jacob, Jpn. J. Appl. Phys. 34, 2163 (1995).

    Article  Google Scholar 

  37. S. Gupta, B.R. Weiner, and G. Morell, Diamond Relat. Mater. 11, (2001, in press).

  38. S. Gupta, B.R. Weiner, and G. Morell, Diamond Relat. Mater. 11, (2001, in press); G. Morell, L.M. Cancel, O.L. Figueroa, and B.R. Weiner, J. Appl. Phys. 88, 5716 (2000).

  39. F.G. Celli and J.E. Butler, Annu. Rev. Phys. Chem. 42, 643 (1991).

    Article  Google Scholar 

  40. T. Lang, J. Stiegler, Y. von Kaenel, and E. Blank, Diamond Relat. Mater. 5, 1171 (1996).

    Article  CAS  Google Scholar 

  41. L.L. Connel, J.W. Fleming, H-N. Chu, D.J. Vestyck Jr., E. Jensen, and J.E. Butler, J. Appl. Phys. 78, 3622 (1995).

    Article  Google Scholar 

  42. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), pp. 102–111.

    Google Scholar 

  43. D.G. Goodwin, J. Appl. Phys. 74, 6888 (1993).

    Article  CAS  Google Scholar 

  44. J.E. Butler and R.L. Woodin, Philos. Trans. R. Soc. London 342, 209 (1993).

    CAS  Google Scholar 

  45. C. Brosseau, F. Boulic, P. Queffelec, C. Bourbigot, Y. Le Mest, J. Loaec, and A. Beroual, J. Appl. Phys. 81, 882 (1997) and references therein.

    Article  CAS  Google Scholar 

  46. W. Hsu, J. Appl. Phys. 72, 3102 (1992).

    Article  CAS  Google Scholar 

  47. E. Kondoh, T. Ohta, T. Mitomo, and K. Ohtsuka, J. Appl. Phys. 73, 3041 (1993).

    Article  CAS  Google Scholar 

  48. N. Wada and A. Solin, Physica 105B, 353 (1989).

    Google Scholar 

  49. M. Chhowalla, A.C. Ferrari, J. Robertson, and G.A.J. Amaratunga, Appl. Phys. Lett. 76, 1419 (2000).

    Article  CAS  Google Scholar 

  50. M. Yoshikawa, Mater. Sci. Forum 52, 53, 365 (1989) and references therein.

    Article  Google Scholar 

  51. R.J. Nemanich, J.T. Glass, G. Luckovsky, and R.E. Schröder, J. Vac. Sci. Technol. 6, 1783–1787 (1988); R.C. Hyer, M. Green, and S.C. Sharma, Phys. Rev. B 49, 14573 (1994).

    Article  CAS  Google Scholar 

  52. P.K. Bachmann, D. Leers, and H. Lydtin, Diamond Relat. Mater. 1, 383 (1991).

    Article  Google Scholar 

  53. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14 095 (2000).

    Article  CAS  Google Scholar 

  54. K.M. Krishnan, D.F. Blake, F. Freund, and R.J. Lipari, in EA-15, Diamond and Diamond-like Material Synthesis, edited by G.H. Johnson, M.W. Geis, and A.R. Badzian (1988), p. 7 and references therein.

  55. R.H. Ritchie, Phys. Rev. 106, 874 (1957).

    Article  CAS  Google Scholar 

  56. S.R. Kasi, H. Kang, and J.W. Rabalais, J. Chem. Phys. 88, 5914 (1988).

    Article  CAS  Google Scholar 

  57. R. Chourasia, D.R. Chopra, S.C. Sharma, M. Green, C.A. Dark, and R.C. Hyer, Thin Solid Films 193–194, 1079 (1990).

    Article  Google Scholar 

  58. M.M. Waite and S.I. Shah, Appl. Phys. Lett. 60, 2344 (1992).

    Article  CAS  Google Scholar 

  59. L.C. Qin, D. Zhou, A.R. Krauss, and D.M. Gruen, Nanostruct. Mater. 10, 649 (1998).

    Article  CAS  Google Scholar 

  60. A.J. Aronson, The Art of Sputtering Process Development (Materials Research Corp., Santa Barbara, CA, 1984).

    Google Scholar 

  61. J. Roberston, Prog. Solid State Chem. 21, 199 (1991).

    Article  Google Scholar 

  62. J.A. González, O.L. Figueroa, B.R. Weiner, and G. Morell, J. Mater. Res. 16, 293 (2001).

    Article  Google Scholar 

  63. B. Campbell and A. Mainwood, Phys. Status Solidi A 181, 99 (2000).

    Article  CAS  Google Scholar 

  64. P.W. Levy and O.F. Kammerer, Phys. Rev. 100, 1787 (1955).

    Article  CAS  Google Scholar 

  65. K. Ashida, K. Kanamori, K. Ichimura, M. Matsuyama, and K. Watnabe, J. Nucl. Mater. 137, 288 (1986).

    Article  CAS  Google Scholar 

  66. J.A. Thornton, Annu. Rev. Mater. Sci. 7, 1239 (1977).

    Article  Google Scholar 

  67. Y. Sato, K. Sato, H. Tanaka, K. Fujita, and S. Matsuda, J. Mater. Sci. 23, 842 (1988).

    Article  Google Scholar 

  68. T. Heitz, B. Drévillon, C. Godet, and J.E. Bourée, Carbon 37, 771 (1999).

    Article  CAS  Google Scholar 

  69. M. Frenklach and K.E. Spear, J. Mater. Res. 3, 133 (1988).

    Article  CAS  Google Scholar 

  70. N. Akita, Y. Konishi, S. Ogura, M. Imamura, Y.H. Hu, and X. Shi, Diamond Relat. Mater. 10, 1017 (2001).

    Article  CAS  Google Scholar 

  71. Y. Lifshitz, S.R. Kasi, and J.W. Rabalais, Mater. Sci. Forum 52, 53, 237 (1989).

    Article  Google Scholar 

  72. R.A. Meyers, in Encyclopaedia of Modern Physics (Academic Press Inc., New York, 1990), pp. 568–571.

    Google Scholar 

  73. H. Eto, Y. Tamou, Y. Oshawa, and N. Kikuchi, Diamond Relat. Mater. 1, 372 (1992).

    Article  Google Scholar 

  74. A. Illie, A.C. Ferrari, T. Yagi, and J. Robertson, Appl. Phys. Lett. 76, 2627 (2000).

    Article  Google Scholar 

  75. S. Gupta, B.R. Weiner, and G. Morell, Appl. Phys. Lett. 80, 1471 (2002).

    Article  CAS  Google Scholar 

  76. J. Robertson and E.P. O’Reilly, Phys. Rev. B35, 2946 (1987).

    Article  Google Scholar 

  77. J-L. Kwo, M. Yokoyama, and I-N. Lin, Appl. Surf. Sci. 142, 521 (1999).

    Article  CAS  Google Scholar 

  78. S. Evans and J.M. Thomas, Proc. R. Soc. London, Ser. A 353, 103 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Weiner, B.R. & Morell, G. Synthesizing Nanocrystalline Carbon Thin Films by Hot Filament Chemical Vapor Deposition and Controlling Their Microstructure. Journal of Materials Research 17, 18 (2002). https://doi.org/10.1557/JMR.2002.0270

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.2002.0270

Navigation