Skip to main content
Log in

Fe2+ Contents and Magnetocrystalline Anisotropy in Iron Defect LiZnTiMn Ferrites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An investigation of the effects of the iron defect k in LiZnTiMn ferrites using Mössbauer spectroscopy and ferromagnetic resonance techniques was carried out in single-phased samples. Results show that the isomer shifts have values corresponding to a compound with either low-spin Fe(II), low-spin Fe(III), or high-spin Fe(III). On the other hand, the Lande factor and the ferromagnetic resonance linewidth disclosed that g is always very close to 2, being equal to 2.02 when k = 0.06. A minimum in ΔH was detected for this value of k. From these results, the possible presence of Fe2+ in the samples could be excluded, and it was concluded that the changes in ΔH are due to the variation of the Fe(III) contents in the tetrahedral and octahedral sites. The existence of the minimum in ΔH is due to a compensation point in the magnetocrystalline anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Iglesias, I.V. Guerasimenko, S. Díaz, and A. González Arias, Phys. Status Solidi A 221 (1993).

  2. A. González Arias, A. Del Cueto, J.M. Muñoz, and C. De Francisco, Mater. Lett. 37, 187 (1998).

    Article  Google Scholar 

  3. D.H. Ridgley, H. Lessoff, and J.D. Childress, J. Am. Ceram. Soc. 53, 6, 304 (1970).

  4. C. Flores, A. González Arias, V. Raposo, L. Torres, J. Iñiguez, and C. De Francisco, J. Magn. Magn. Mater. 226–230, 1432–1434 (2001).

    Google Scholar 

  5. 5. K. Deeppik, P. Sumitra, J.S. Baijal, K. Prom, and P. Chandra, J. Phys. C: Solid State Phys. 21, 6169 (1988).

    Article  Google Scholar 

  6. K.S. Kulshreshtha, J. Magn. Magn. Mater. 53, 345 (1986).

    Article  CAS  Google Scholar 

  7. A.A. Yousif, M.E. Elzain, S.A. Mazen, H. Sutherland, H. Abdala, and S.F. Masour, J. Phys.: Condens. Matter 6, 5717 (1994).

    CAS  Google Scholar 

  8. H.H. Wickman, Mössbauer Effects Methodology (Magnum Press, 1966), Vol. 2, p. 34.

    Google Scholar 

  9. ICC Standard No. 596, 5th ed. (International Electrotechnical Commission, Geneva, Switzerland, 1980).

  10. U. Gonser, Mössbauer Spectroscopy (Springer-Verlag, Berlin and Heidelberg, Germany, New York, 1975), p. 69.

    Book  Google Scholar 

  11. N.M. Artherton, Electron Spin Resonance, Theory and Practice (John Wiley, New York, 1994).

    Google Scholar 

  12. J.A. Weil, J.R. Bolton, and E. Wertz, Electron Spin Resonance, 2nd ed. (John Wiley, New York, 1994).

    Google Scholar 

  13. S. Jan, W. Gerhard, V. Jan, J.F. Dillon Jr., S. Weiss, J.C. Mallison, and S. Middelhoek, Magnetic Properties of Materials (McGraw-Hill, New York, 1971), p. 9.

    Google Scholar 

  14. W.P. Wolf, Phys. Rev. 108, 1152 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Iglesias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias, A., Balmaseda, J. & Arias, A.G. Fe2+ Contents and Magnetocrystalline Anisotropy in Iron Defect LiZnTiMn Ferrites. Journal of Materials Research 17, 1702–1705 (2002). https://doi.org/10.1557/JMR.2002.0251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0251

Navigation