Skip to main content
Log in

Toward Rational Design of Fast Ion Conductors: Molecular Dynamics Modeling of Interfaces of Nanoscale Planar Heterostructures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Increased ionic conductivity at nanoscale planar interfaces of the CaF2|BaF2 system was successfully modeled using molecular dynamics simulations. A criterion was established to construct simulation cells containing any arbitrarily lattice-mismatched interfaces while permitting periodic boundary condition. The relative (to the bulk) ionic conductivity increase at the 111 (CaF2)|111 (BaF2) interface was qualitatively reproduced. Higher conductivity, by a factor of 7.6, was predicted for the 001 (CaF2)|001 (BaF2) interface. A crystalline nanocomposite of the CaF2|BaF2 system, in which the [001] morphology is encouraged and crystallite dimensions are approximately 4 nm, was proposed to give ionic conductivity approaching that predicted for the 001 (CaF2)|001 (BaF2) interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kudo and K. Fueki, Solid State Ionics, 1st ed. (VCH, Weinheim, Germany, 1990); C.E. Rice and P.M. Bridenbaugh, Appl. Phys. Lett. 38, 59 (1981); A. Sher, C.L. Fales, and J.F. Stubblesfield, Appl. Phys. Lett. 28, 676 (1976); J. Schooman, J. Electrochem. Soc. 154, 1553 (1976).

    Google Scholar 

  2. S. Hall and P. Berastegui, J. Phys.: Condens. Matter. 11, 5257 (1999); R.W. Bonne and J. Schoonman, J. Electrochem. Soc.: Electrochem Sci. Technol. 124, 28 (1997); S. Hull, P. Berastegui, S.G. Eriksson, and N.J.G. Gardner, J. Phys.: Condens. Matter. 10, 8429 (1998); Y. Ito, T. Mukoyama, F. Kanamaru, and S. Yoshikado, Solid State Ionics 73, 728 (1994).

    Google Scholar 

  3. H. Jiang, A. Costales, M.A. Blanco, M. Gu, R.J.D. Pandey, Phys. Rev. B, 62, 803 (2000); M.J. Castiglione, M. Wilson, and P.A. Madden, J. Phys.: Condens. Matter. 11, 9009 (1999).

    Article  CAS  Google Scholar 

  4. G-Y. Adachi, N. Imanaka, and H. Aono, Adv. Mater. 8, 127 (1996); J.R. Owen, Chem. Soc. Rev. 26, 259 (1997); A.D. Robertson, A.R. West, and A.G. Ritchie, Solid State Ionics 104, 1 (1997).

    Article  CAS  Google Scholar 

  5. C.C. Liang, J. Electrochem. Soc. 120, 1289 (1973).

    Article  CAS  Google Scholar 

  6. F. Zimmer, P. Ballone, M. Parrinello, and J. Maier, Solid State Ionics 127, 277 (2000); N.T. Wilson, P.A. Madden, and Pyper, J. Chem. Phys. 105, 11209 (1996); R. Yamamoto, Kobayashi, and Y. Kawamoto, J. Phys.: Condens. Matter 7, 8557 (1995); P.J.D. Lindan and M.J. Gillan, J. Phys.: Condens Matter 5, 1019 (1993); Computer Simulation of Solids edited by C.R.A. Catlow and W.C. Mackrodt (Springer, Berlin, Germany, 1982)

    Article  CAS  Google Scholar 

  7. G. Schulz and M. Martin, Faraday Discuss. 106, 291 (1997).

    Article  CAS  Google Scholar 

  8. Q. Shen and D.E. Ellis, Phys. Rev. B 51, 15732 (1995).

    Article  CAS  Google Scholar 

  9. N. Sata, K. Eberman, K. Eberl, and J. Maier, Nature 408, 946 (2000).

    Article  CAS  Google Scholar 

  10. R.B. Little, M.A. El-Sayed, G.W. Bryant, and S. Burke, J. Chem. Phys. 114, 1813 (2001).

    Article  CAS  Google Scholar 

  11. J. Maier, Solid State Ionics 131, 13 (2000); J. Maier, J. Electrochem. Soc. 134, 1524 (1987).

    Article  CAS  Google Scholar 

  12. J. Maier, Prog. Solid State Chem. 23, 171 (1995); I. Markov and A. Milchev, Surface Sci. 136, 519 (1984); A. Zur and T.C. McGill, J. Appl. Phys. 55, 378 (1984); I. Royer, Bull. Soc. Fr. Mineral Cristallogr. 51, 7 (1928).

    Article  CAS  Google Scholar 

  13. I Rayer, Bull. Soc. Fr. Mineral Cristallogr. 51, 7 (1928).

    Google Scholar 

  14. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  15. J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B: Condens. Matter 54, 16533 (1996).

    Article  CAS  Google Scholar 

  16. H. Sun, J. Phys. Chem. B 102, 7338 (1998).

    Article  CAS  Google Scholar 

  17. J.D. Gale, General Utility Lattice Program (Royal Institution of Great Britain/Imperial College, United Kingdom, 1992–1994).

    Google Scholar 

  18. J.G. Stark and H.G. Wallace, Chemistry Data Book, 2nd ed. (Murray, New York, 1991).

    Google Scholar 

  19. A. Navrotsky, MRS Bull. 35 (1997); I. Petrovic, A. Navrotsky, M.E. Davis, and S.I. Zones, Chem. Mater. 5, 1805 (1993).

  20. P.J.D. Lindan and M.J. Gillan, J. Phys.: Condens. Mater. 5, 1019 (1993).

    CAS  Google Scholar 

  21. R. Yamamoto, T. Kabayashi, and Y. Kawanoto, J. Phys.: Condens. Matter. 7, 8557 (1995).

    CAS  Google Scholar 

  22. K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786 (1956); R.W.G. Wyckoff, in Crystal Structures (Interscience, John Wiley & Sons, 1963), Vol. 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J.J., Kung, PC. Toward Rational Design of Fast Ion Conductors: Molecular Dynamics Modeling of Interfaces of Nanoscale Planar Heterostructures. Journal of Materials Research 17, 1686–1691 (2002). https://doi.org/10.1557/JMR.2002.0248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0248

Navigation