Skip to main content
Log in

Mechanical Performance of 3Y-TZP/Ni Composites: Tensile, Bending, and Uniaxial Fatigue Tests

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dense 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP/Ni) homogeneous composites were prepared by a wet-processing route with metal concentration ranging from 0 to 40 vol%. Cyclic fatigue stress/life, tensile and bending strength, and fracture toughness were investigated in 3Y-TZP monolithic samples and 3Y-TZP/Ni composites. It was found that the addition of Ni particles to the 3Y-TZP matrix produced an embrittlement effect in the composites, decreasing the mechanical properties. This fact was attributed to the weak bonding between the Ni and 3Y-TZP particles in samples sintered in a reductive atmosphere. Additionally, the presence of Ni particles decreases the cyclic tensile fatigue of the composites probably by an environmentally assisted slow crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Birkby and R. Stevens, Applications of Zirconia Ceramics (Key Engineering Materials), Vols. 122–124 (1996), pp. 527, 552

    Google Scholar 

  2. D.J. Green, R.H.J. Hannink, and M.V. Swain, Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989), p. 141.

    Google Scholar 

  3. S.J. Schneider Jr., Engineered Materials Handbook: Ceramics and Glasses (ASM International, 1991), Vol. 4, pp. 776–976.

    Google Scholar 

  4. CRC Handbook of Chemistry and Physics, edited by D.R. Lide and H.P.R. Frederikse (CRC Press, Boca Raton, FL, 1994), pp. 12–53, 12–159.

    Google Scholar 

  5. Encyclopedia of Chemical Technology, 3rd ed, Kirk-Othmer, (John Wiley & Sons, New York, 1981), Vol. 15, p. 788.

    Google Scholar 

  6. C-D. Qin and B. Derby, J. Mater. Res. 6, 1480 (1992).

    Article  Google Scholar 

  7. J.E. Sundeen and R.C. Buchanan, Sens. Actuators A-Phys. 63, 33 (1997).

    Article  CAS  Google Scholar 

  8. M. Takemura, T. Hyakubu, A. Yoshitake, M. Tamura, M. Niino, and A. Kumakawa, in Functionally Gradient Materials, Ceramic Transactions, edited by J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir, (Proc. 2nd Int. Symp. Funct. Grad. Mater., San Francisco, CA, 1993), Vol. 34, pp. 271–278.

    Google Scholar 

  9. Y. Kuroda, K. Kusaka, A. Moron, and M. Togawa, in Functionally Gradient Materials, Ceramic Transactions, edited by J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir, (Proc. 2nd Int. Symp. Funct. Grad. Mat., San Francisco, CA, 1993), Vol. 34, pp. 289–296.

    Google Scholar 

  10. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  11. J.G. Heinrich and F. Aldinger, Ceramic Materials and Components for Engines (Wiley-VCH, Weinheim, Germany, 2001).

    Book  Google Scholar 

  12. C. Pecharromán, S. López-Esteban, J.F. Bartolomé, and J.S. Moya, J. Am. Ceram. Soc. 84, 2439 (2001).

    Article  Google Scholar 

  13. R. Fu and T.Y. Zhang, J. Am. Ceram. Soc. 83, 1215 (2000).

    Article  CAS  Google Scholar 

  14. S.W. Freiman and R.C. Pohanka, J. Am. Ceram. Soc. 72, 2258 (1989).

    Article  CAS  Google Scholar 

  15. J.M. Blamey and T.V. Parry, J. Mater. Sci. 28, 4311 (1993).

    Article  CAS  Google Scholar 

  16. P.L. Fulman, Trans. AIME 197, 447 (1953).

    Google Scholar 

  17. D.J. Green, F.F. Lange, and M.R. James, J. Am. Ceram. Soc. 66, 623 (1983).

    Article  CAS  Google Scholar 

  18. T. Tanimoto and K. Okazaki, IEEE, 7th Int. Symposium on the Application of Ferroelectrics, (1990), pp. 40–43.

  19. T. Tanimoto, Acta Mater. 46, 2455 (1998).

    Article  CAS  Google Scholar 

  20. P. Miranzo and J.S. Moya, Ceram. Int. 10, 147 (1984).

    Article  CAS  Google Scholar 

  21. D. Sotiropoulou and S. Ladas, Surf. Sci. 408, 182 (1998).

    Article  CAS  Google Scholar 

  22. J-G. Choi and L.T. Thompson, Appl. Surf. Sci. 93, 143 (1996).

    Article  CAS  Google Scholar 

  23. P.C. Paris and F. Erdogan, Trans. ASME, J. Basic Eng. 85, 528 (1963).

    Article  CAS  Google Scholar 

  24. N. Mommer, T. Lee, and J.A. Gardner, J. Mater. Res. 15, 377 (2000).

    Article  CAS  Google Scholar 

  25. J.F. Bartolome´, M. Diaz, J.S. Moya, and A.P. Tomsia, Acta Mater. 47, 3891 (1999).

    Article  Google Scholar 

  26. W.G. Fahrenholtz, D.T. Ellerby, and R.E. Loehman, J. Am. Ceram. Soc. 83, 1279 (2000).

    Article  CAS  Google Scholar 

  27. W.H. Tuan, H.H. Wu, and T.J. Yang, J. Mater. Sci. 30, 855 (1995).

    Article  CAS  Google Scholar 

  28. W.H. Tuan and R.J. Brook, J. Eur. Ceram. Soc. 6, 31 (1990).

    Article  CAS  Google Scholar 

  29. X. Sun and J.A. Yeomans, J. Am. Ceram. Soc. 79, 562 (1996).

    Article  CAS  Google Scholar 

  30. E. Breval, Z. Deng, S. Chiou, and C.G. Pantano, J. Mater. Sci. 27, 1464 (1992).

    Article  CAS  Google Scholar 

  31. S.A. Jones, J.M. Burlitch, E. Üstündag, J. Yoo, and A.T. Zehnder, in Ceramic Matrix Composites Advanced High-Temperature Materials, edited by R.A. Lowden, M.K. Ferber, J.R. Hellman, K.K. Chawla, and S.G. DiPietro (Mater. Res. Soc. Symp. Proc. 365, Pittsburgh, PA, 1995), pp. 53–58.

    Google Scholar 

  32. A.A. Kahn and J.C. Labbe, J. Mater. Sci. 32, 382 (1997).

    Google Scholar 

  33. J-L. Huang and Ch-H. Li, J. Mater. Res. 9, 3153 (1994).

    Article  CAS  Google Scholar 

  34. B.D. Flinn, M. Ru¨hle, and A.G. Evans, Acta Metall. Mater. 37, 3001 (1989).

    Article  CAS  Google Scholar 

  35. J.G. Duh and W.S. Chien, J. Mater. Sci. 25, 1529 (1990).

    Article  CAS  Google Scholar 

  36. Y.C. Wu and J.G. Duh, J. Mater. Sci. Lett. 9, 583 (1990).

    Article  CAS  Google Scholar 

  37. J.C. Zhu, S.Y. Lee, Z.D. Yin, and Z.H. Lai, in Functionally Graded Materials 1996, edited by I. Shiota and M.Y. Miyamoto (Elsevier Science, Amsterdam, The Netherlands, 1997), pp. 203–208.

    Book  Google Scholar 

  38. M. Huang, L. Jiang, P.K. Liaw, Ch.R. Brooks, R. Seedley, and D.L. Klarstrom J. Mater. 50, 1 (1998).

    Google Scholar 

  39. M.A. Hamstad, Exper. Mech. 26, 7 (1986).

    Article  Google Scholar 

  40. A.G. Evans and E.R. Fuller, Metall. Trans. 5, 27 (1974).

    Google Scholar 

  41. A.G. Evans, Int. J. Fracture 16, 485 (1980).

    Article  CAS  Google Scholar 

  42. C.K.L. Davies, F. Guiu, M. Li, M.J. Reece, and R. Torrecillas, J. Eur. Ceram. Soc. 18, 221 (1998).

    Article  CAS  Google Scholar 

  43. M. Knechtel, D. García, J. Rödel, and N. Claussen, J. Am. Ceram. Soc. 76, 2681 (1993).

    Article  CAS  Google Scholar 

  44. J. Chevalier, C. Olagnon, G. Fantozzi, and B. Cales, J. Am. Ceram. Soc. 78, 1889 (1995).

    Article  CAS  Google Scholar 

  45. J. Alcala´ and M. Anglada, J. Am. Ceram. Soc. 80, 2759 (1998).

    Article  Google Scholar 

  46. H. Yin, M. Gao, and R.P. Wei, Acta Metall. Mater. 43, 371 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loópez, S., Bartolomeé, J.F., Moya, J.S. et al. Mechanical Performance of 3Y-TZP/Ni Composites: Tensile, Bending, and Uniaxial Fatigue Tests. Journal of Materials Research 17, 1592–1600 (2002). https://doi.org/10.1557/JMR.2002.0237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0237

Navigation