Skip to main content
Log in

Preparation and microstructure evolution of both freestanding and supported TiO2 thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin films of TiO2 were fabricated by spin-coating silicon wafers and cover glass with a titanium citrate complex precursor. The grain growth and phase development of both freestanding and supported films were studied using a combination of atomic force microscopy, x-ray diffraction, and transmission electron microscopy. Freestanding films prepared at 400 °C possess only the anatase phase, while supported films treated under the same conditions formed a small amount of the rutile phase. After heat treatment at various temperatures, results indicated that porosity was introduced into the films when the grain size grew close to the film thickness. Grain growth studies show that the grain size of the freestanding film underwent a drastic increase during the transformation from anatase to rutile. The grain size of the supported films did not show an abrupt change upon heat treatment. The grain size of the freestanding films treated at 900 °C was approximately three times larger than that of the supported films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Micheli, Am. Ceram. Soc. Bull. 63, 694 (1984).

    CAS  Google Scholar 

  2. L.A. Harris, J. Electrochem. Soc. 127, 2657 (1980).

    Article  CAS  Google Scholar 

  3. L.M. Sheppard, Adv. Mater. Process. 9, 19 (1986).

    Google Scholar 

  4. L.D. Birkefeld, A.M. Azad, and S.A. Akbar, J. Am. Ceram. Soc. 75, 2964 (1992).

    Article  CAS  Google Scholar 

  5. A. Larbot, J-P. Fabre, C. Guizard, and L. Cot, J. Am. Ceram. Soc. 72, 257 (1989).

    Article  CAS  Google Scholar 

  6. M.A. Rashti and D.E. Brodie, Thin Solid Films 240, 163 (1994).

    Article  CAS  Google Scholar 

  7. M. Ghanashyam Krishna, K. Narasimha Rao, and S. Mohan, J. Appl. Phys. 73, 434 (1993).

    Article  Google Scholar 

  8. M.H. Suhail, G. Mohan Rao, and S. Mohan, J. Appl. Phys . 71, 1421 (1992).

    Article  CAS  Google Scholar 

  9. S. Pongratz and A. Zoller, J. Vac. Sci. Technol., A 10, 1897 (1992).

    Article  Google Scholar 

  10. G. Atanassov, R. Thielsch, and D. Popov, Thin Solid Films 223, 288 (1993).

    Article  CAS  Google Scholar 

  11. L-j. Meng, M. Andritschky, and M.P. dos Santos, Thin Solid Films 223, 242 (1993).

    Article  CAS  Google Scholar 

  12. L-j. Meng and M.P. dos Santos, Thin Solid Films 226, 22 (1993).

    Article  CAS  Google Scholar 

  13. L-j. Meng and M.P. dos Santos, Appl. Surf. Sci. 68, 319 (1993).

    Article  CAS  Google Scholar 

  14. K.A. Vorotilov, E.V. Orlova, and V.I. Petrovsky, Thin Solid Films 207, 180 (1992).

    Article  CAS  Google Scholar 

  15. L.S. Hsu, R. Rujkorakarn, J.R. Sites, and C.Y. She, J. Appl. Phys. 59, 3475 (1986).

    Article  CAS  Google Scholar 

  16. C.L. Fan and W. Huebner, IEEE Symposium on Application of Ferroelectrics (IEEE, Piscataway, NJ, 1994).

    Google Scholar 

  17. C.L. Fan, Ph.D. Thesis (1995).

  18. J.L. Keddie, P.V. Braun, and E.P. Giannelis, J. Am. Ceram. Soc. 77, 1592 (1994).

    Article  CAS  Google Scholar 

  19. J.L. Keddie and E.P. Giannelis, In Better Ceramics Through Chemistry IV (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), edited by B.J.J. Zelinsky, D.E. Clark, and D.R. Ulrich, pp. 425–428.

    Google Scholar 

  20. S.Y. Lee, R.E. Hummel, and R.T. DeHoff, Thin Solid Films 149, 29 (1987).

    Article  CAS  Google Scholar 

  21. R.E. Hummel, R.T. DeHoff, S. Matts-Goho, and W.M. Goho, Thin Solid Films 78, 1 (1981).

    Article  CAS  Google Scholar 

  22. S.K. Sharma and J. Spitz, Thin Solid Films 65, 335 (1980).

    Article  Google Scholar 

  23. K.T. Miller, F.F. Lange, and D.B. Marshall, J. Mater. Res. 5, 151 (1990).

    Article  CAS  Google Scholar 

  24. D.J. Srolovitz and S.A. Safran, J. Appl. Phys. 60, 247 (1986).

    Article  CAS  Google Scholar 

  25. D.J. Srolovitz and S.A. Safran, J. Appl. Phys. 60, 255 (1986).

    Article  CAS  Google Scholar 

  26. Y. Gao, K.L. Merkle, H.L. Chang, T.J. Zhang, and D.L. Lam, Philos. Mag., A 65, 1103 (1992).

    Article  CAS  Google Scholar 

  27. R.K. Bordia and A. Jagota, J. Am. Ceram. Soc. 76, 2475 (1993).

    Article  CAS  Google Scholar 

  28. M. Ocana, J.V. Garcia-Romos, and C.J. Serna, J. Am. Ceram. Soc. 75, 2010 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, CL., Ciardullo, D., Paladino, J. et al. Preparation and microstructure evolution of both freestanding and supported TiO2 thin films. Journal of Materials Research 17, 1520–1528 (2002). https://doi.org/10.1557/JMR.2002.0226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0226

Navigation