Skip to main content
Log in

Electrorheological properties of suspensions based on polyaniline-montmorillonite clay nanocomposite

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

It is thought that high-dielectric constant, suitable conductivity, and dielectric loss dominate electrorheological (ER) effects. According to this viewpoint, the polyaniline/montmorillonite nanocomposite (PANI-MMT) particles with high-dielectric constant and suitable conductivity were synthesized by an emulsion intercalation method. The electrorheological properties of the suspensions of PANI-MMT particles in silicone oil have been investigated under direct current electric fields. At room temperature, it was found that the yield stress of PANI-MMT ER fluid was 7.19 kPa in 3 kV/mm, which is much higher than that of pure polyaniline (PANI), that of pure montmorillonite (MMT) as well as that of the mixture of polyaniline with clay (PANI+MMT). In the range of 10–100 °C, the yield stress changed only 6.5% with the variation of temperature. The sedimentation ratio of PANI-MMT ERF was about 98% after 60 days. The structure of PANI-MMT particles was characterized by infrared, x-ray diffraction (XRD), and transmission electron microscopy (TEM) spectrometry, respectively. The XRD spectra show that the inner layer distance of PANI-MMT can be enhanced to 1.52 nm when the PANI was inserted into the interlayer of MMT, whereas it is only 0.96 nm for free MMT. TEM shows that the diameter of PANI-MMT particles is about 100 nm. The dielectric constant of PANI-MMT nanocomposite was increased 5.5 times that of PANI and 2.7 times that of MMT, besides, the conductivity of PANI-MMT particle was increased about 8.5 times that of PANI at 1000 Hz. Meanwhile, the dielectric loss tangent can also be increased about 1.7 times that of PANI. It is apparent that the notable ER effect of PANI-MMT ER fluid was attributed to the prominent dielectric property of the polyaniline-montmorillonite nanocomposite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.C. Halsey, Science 258, 761 (1992).

    Article  CAS  Google Scholar 

  2. H. Block and J.P. Kelly, J. Phys. D: Appl. Phys. 21, 1661 (1988).

    Article  CAS  Google Scholar 

  3. E.W. Willams, S.G. Rigby, J.L. Sproston, and R. Stanway, J. Non-Newtonian Fluid Mech. 47, 221 (1993); S. B. Choi, Y. T. Choi, E. G. Chang, S. J. Han, and C. S. Kim, Mechatronics. 8, 143 (1998).

    Article  Google Scholar 

  4. H.J. Choi, M.S. Cho, and M.S. Jhon, Polym., Adv. Tech. 8, 697 (1997).

    Article  CAS  Google Scholar 

  5. C.J. Gow and C.F. Zukoski, J. Colloid Interface Sci, 136, 175 (1989); H.J. Choi, T.W. Kim, M.S. Cho, S.G. Kim, and M.S. Jhon, Eur. Polym. J. 33, 699 (1997); H.J. Choi, M.S. Cho, and K. To, Physica A 254, 272 (1998).

    Article  Google Scholar 

  6. J.W. Goodwin, G.M. Markham, and B. Vinent, J. Phys. Chem. B 101, 1961 (1997).

    Article  CAS  Google Scholar 

  7. M.S. Cho, H.J. Choi, and K. To, Macromol. Rapid Commun. 19, 271 (1998).

    Article  CAS  Google Scholar 

  8. M. Kawasumi, N. Hasegawa, M. Koto, A. Usuki, and A. Okada, Macromolecules 30, 6333 (1997); R.A. Vaia, B.B. Sauer, O.K. Dse, and E.P. Giannelis, J. Polym. Sci: Part B: Polym. Phys. 35, 59 (1997); H.L. Tyan, K.H. Wei, and T.E. Hsieh, J. Polym. Sci: Part B: Polym. Phys. 38, 2873 (2000).

    Article  CAS  Google Scholar 

  9. M.S. Wang and T.J. Pinnavaia, Chem. Mater. 6, 468 (1994);

    Article  CAS  Google Scholar 

  10. N. Ogata, S. Kawakage, and T. Ogihara, Polymer 38, 5115 (1997);

    Article  CAS  Google Scholar 

  11. A. Usuki, Y. Kojoma, M. Kawasumi, A. Okada, T. Kuranchi, and O. Kamigaito, Polym. Prepr. 31, 651 (1990); K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. A: Polym. Chem. 31, 2493 (1993); P.B. Messersmith and E.P. Giannelis, J. Polym. Sci. A: Polym. Chem. 33, 1047 (1995); P. Kelly, A. Akelah, S. Outubuddin, and A. Moet, J. Mater. Sci. 29, 2274 (1994).

    CAS  Google Scholar 

  12. J.H. Par, Y.T. Lim, and O.O. Park, Macromol. Rapid Commun. 22, 616 (2001).

    Article  Google Scholar 

  13. N. Kuramoto, M. Yamazaki, K. Nagai, and K. Koyama, Thin Solid Films 239, 169 (1994); K. Yatsuzuka, K. Miura, N. Kuramoto, and K Asano, IEEE Trans. Ind. Applicat. 31, 457 (1995).

    Article  CAS  Google Scholar 

  14. H.J. Choi, J.W. Kim, M.H. Noh, D.C. Lee, M.S. Suh, M.J. Shin, and M.S. Jhon, J. Mat. Sci. Lett. 18, 1505 (1999).

    Article  CAS  Google Scholar 

  15. C.W. Wu and H. Conrad, Phys. Rev. 56, 5789 (1997); X. Zhao, J. Yin and L. Xiang, Chinese J. Mater. (in Chinese) Res. 15, 308 (2001); X. Zhao, J. Yin, L. Xiang, and Q. Zhao, Chinese J. Mater. Res. (in Chinese) 14, 604 (2000); Y. Lan, S. Men, X. Zhao, K. Lu, Appl. Phys. Lett. 72, 653 (1998); T. Hao, Appl. Phys. Lett. 70, 1956 (1997).

    CAS  Google Scholar 

  16. J. Yin and X. Zhao, J. Phys. D: Appl. Phys. 34, 2063 (2001); J.B. Yin and X. P. Zhao, Chin. Phys. Lett. 1144 (2001).

    Article  CAS  Google Scholar 

  17. X.P. Zhao and J. Lu, Synthesis of Polyaniline/Montmorillonite Clay Nanocomposite and its ER Behaviors, Chinese Patent 01106797.7 (2001).

  18. J.W. Kim, S.G. Kim, H.J. Choi, M.S. Suh, M.J. Shin, and M.S. Jhon, in Proceedings of the 7th International Conference on Electrorheological Fluids and Magneto-Rheological Suspensions, edited by R. Tao (World Scientific, Singapore, 2000), p. 111.

    Book  Google Scholar 

  19. B.D. Chin and O.O. Park, J. Rheol. 44, 397 (2000).

    Article  CAS  Google Scholar 

  20. D.J. Jeffrey and A. Acrivos, AIChE J. 22, 417 (1976).

    Article  CAS  Google Scholar 

  21. H. Conrad, A.F. Sprecher, Y. Choi, and Y. Chen, J. Rheology, 35, 1393 (1991); B. Liu and M. T. Shaw, J. Rheol. 45, 641 (2001).

    Article  CAS  Google Scholar 

  22. X.P. Zhao, C.R. Luo, and B.L. Zho, Mater. Rev. 8, 12 (1993).

    Article  Google Scholar 

  23. G.E. Wnek, Synth. Met. 15, 213 (1986).

    Article  CAS  Google Scholar 

  24. H. Block, J.P. Kelly, A. Qin, and T. Waston, Langmuir. 6, 6 (1990).

    Article  CAS  Google Scholar 

  25. L.C. Davis, J. Appl. Phys. 72, 1334 (1992).

    Article  CAS  Google Scholar 

  26. H. Block and J.P. Kelly, in Progress in Electrorheology, edited by Havelka and F.E. Filisko (Plenum, New York, 1995), p. 19;

    Book  Google Scholar 

  27. Böse and A. Trendler, in Proc. of the 7th Int. Conf. on ERF and MRS, edited by R. Tao, (World Scientific, Singapore, 2000), p. 80.

    Google Scholar 

  28. M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Zhao, X. Electrorheological properties of suspensions based on polyaniline-montmorillonite clay nanocomposite. Journal of Materials Research 17, 1513–1519 (2002). https://doi.org/10.1557/JMR.2002.0225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0225

Navigation